Skip to main content

Nanoparticles and Nanostructures: Aerosol Synthesis and Characterization

  • Chapter
Nanostructured Materials

Part of the book series: NATO ASI Series ((ASHT,volume 50))

Abstract

The remarkable properties of materials synthesized from nanometer-sized particles were discovered using particles that were formed as aerosols. Although other routes for nanoparticle synthesis have evolved, aerosol routes remain a major method. The original processes employed by Gleiter and coworkers entailed evaporation of a metal into a low density gas where the vapors formed nanoparticles by homogeneous nucleation. Those nanoparticles were then collected by thermophoresis for subsequent consolidation. In a study that predated the use of vapor condensation as a step in the production of consolidated nanostructures, Granqvist and Buhrman provided empirical observations of the role of major control variables. A number of points of confusion remain in this method of nanoparticle synthesis, notably the distinctions between particle size, and the sizes of the microstructures that attract the attention of materials scientists.

This paper will examine the aerosol physics of nanoparticle synthesis with emphasis on unraveling this distinction. The physical processes that govern particle formation growth, structure, and deposition will be examined. The on-line characterization of aerosol nanoparticles will also be probed, with a view toward monitoring of the synthesis process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alonso, M., & Kousaka, Y. 1996. Mobility shift in the differential mobility analyzer due to Brownian diffusion and space charge effects. J. Aerosol Sci., 27, 1201–1225.

    Article  CAS  Google Scholar 

  2. Birringer, R., Gleiter, H., Klein, H. P., & Marquardt, P. 1984. Phys. Lett., 102A, 365–369.

    CAS  Google Scholar 

  3. Camata, R. 1997. Aerosol Synthesis and Characterization of Silicon Nanocrystals. Ph.D. thesis, California Institute of Technology.

    Google Scholar 

  4. Ellerby, H. M., Weakliem, C. L., & Reiss, H. 1991. Toward a molecular theory of vapor phase nucleation. 1. Identification of the average embryo. J. Chem. Phys., 95, 9209–9218.

    Article  CAS  Google Scholar 

  5. Flagan, R. C., & Lundell, M. M. 1995. Particle structure control in nanoparticle synthesis from the vapor phase. Mater. Sci. Eng. A., 204, 113–124.

    Article  Google Scholar 

  6. Flagan, R. C., & Seinfeld, J. H. 1988. Fundamentals of Air Pollution Enganeering. Engelwood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  7. Forrest, S. R., & Witten, T. A. 1979. J. Phys. A.: Math. Gen., 12, L109 - L117.

    Article  CAS  Google Scholar 

  8. Frenkel, J. 1945. J. Phys., 9, 385.

    Google Scholar 

  9. Granqvist, C. G., & Buhrman, R. A. 1976. Ultrafine metal particles. J. Appl. Phys., 47. 2200–2219.

    Article  CAS  Google Scholar 

  10. Hiram, Y., & Nir, A. 1983. J. Colloid Interface Sri., 95, 462.

    Article  CAS  Google Scholar 

  11. Johnson, D.L. 1968. New Method of Obtaining Volume, Grain-Boundary, and Surface Diffusion Coefficients from Sintering Data. J. Appl. Phys., 40, 192–200.

    Article  Google Scholar 

  12. Katz, J. L. 1992. Homogeneous nucleation theory and experiment - A survey. Pure Appl. Chem., 64. 1661.

    Article  CAS  Google Scholar 

  13. Katz, J. L., & Donohue, M. D. 1982. Nucleation with simultaneous chemical reaction. J. Colloid Interface Sci., 85, 267–277.

    Article  CAS  Google Scholar 

  14. Kingery, W.D., & Berg, M. 1955. Study of the Initial Stages of Sintering Solids by Viscous Flow. Evaporation-Condensation, and Self-Diffusion. J. Appl. Phys., 26(10), 1205–1212.

    Article  CAS  Google Scholar 

  15. Knutson, E. O., & Whitby, K. T. 1975. Aerosol classification by electric mobility: apparatus, theory, and applications. J. Aerosol Sci., 6, 443–451.

    Article  Google Scholar 

  16. Kobata, A., Kusakabe, K., & Morooka, S. 1991. Growth and transformation of TiO2 crystallites in aerosol reactor. AIChE J., 37, 347–359.

    Article  CAS  Google Scholar 

  17. Koch, W., & Friedlander, S. K. 1990. The effect of particle coalescence on the surface area of a coagulating aerosol. J. Colloid Interface Sri., 140, 419–427.

    Article  CAS  Google Scholar 

  18. Koch, W., & Friedlander, S. K. 1991. Particle growth by coalescence and agglomeration. Part. Part. Syst., 8, 86–89.

    Article  CAS  Google Scholar 

  19. Kruis, F. E., Kusters, K. A., Pratsinis, S. E., & Scarlett, B. 1993. A simple model for the evolution of the characteristics of aggregate particles undergoing coagulation and sintering. Aerosol Sei. Technol., 19, 514–526.

    Article  CAS  Google Scholar 

  20. Kuczinski, G.C. 1949. Self-Diffusion in Sintering of Metallic Particles. Trans. Am. Inst. Mater.. Eng., 185, 169–178.

    Google Scholar 

  21. Lai, F. S., Friedlander, S. K., Pich, J., & Hidy, G. M. 1972. The self-preserving particle size distribution for Brownian coagulation in the free-molecule regime. J. Colloid Interface Sri., 39, 395.

    Article  CAS  Google Scholar 

  22. Matsoukas, T., & Friedlander, S. K. 1991. J. Colloid Interface Sci., 146, 495.

    Article  CAS  Google Scholar 

  23. McClurg, R. B. 1997. Homogeneous Nucleation Theory.

    Google Scholar 

  24. McClurg, R. B., C., R., & Goddard, W. A. 1997. Influences of binding transit ions on t homogeneous nucleation of mercury. Nanostructured Maier., 9, 53–61.

    Article  CAS  Google Scholar 

  25. Meakin, P. 1986. Pages 111–135 of: Stanley, H., & Ostrowsky, N. (eds), On Growth and Form. Boston, MA: Martinus Nijhoff.

    Google Scholar 

  26. Mountain, R. D., Mulholland, G. W., & Baum, H. 1986. J. Colloid Interface Sri., 114, 67.

    Article  CAS  Google Scholar 

  27. Nguyen, H. V., & Flagan, R. C. 1991. Particle formation and growth in single stage aerosol reactors. Langmuir, 7, 1807–1814.

    Article  CAS  Google Scholar 

  28. Pluyni, T. C., Lyons, S. W., Powell, Q. H., Gurav, A. S., Kodas, T. T., Wang, L. M., & Glocksman, H. D. 1993. Palladium metal and palladium oxide particle production by spray pyrolysis. Mater. Res. Bull., 28, 369–376.

    Article  Google Scholar 

  29. Rao, N. P., & McMurry, P. H. 1990. Effect of the Tolman surface-tension correction on nucleation in chemically reacting systems. Aerosol Sci. Technol., 13, 183–195.

    Article  Google Scholar 

  30. Rossell-Llompart, J., Loscertales, I. G., Bingham, D., & d. l. Mora, J. F. 1996. Sizing nanoparticles and ions with a short differential mobility analyzer. J. Aerosol Sci., 27, 695–719.

    Article  Google Scholar 

  31. Shen, Y. C., & Oxtoby, D. W. 1996. Nucleation of Lennard-Jones fluids–A density-functional approach. J. Chem. Phys, 105, 6517–6524.

    Article  CAS  Google Scholar 

  32. Ulrich, G. D. 1971. Theory of Particle Formation and Growth in Oxide Synthesis Flames. Combust. Sci Technol., 4, 47–57.

    Article  CAS  Google Scholar 

  33. Ulrich, G. D. 1984. Flame synthesis of fine particles. Chem. Engr. News, 62, 22–29.

    Article  CAS  Google Scholar 

  34. Ulrich, G. D., & Riehl, J. W. 1982. Aggregation of Growth of Submicron Oxide Particles in Flames. J. Colloid Interface Sri., 87, 257.

    Article  CAS  Google Scholar 

  35. Ulrich, G.D., Milnes, B.A., & Subramanian, N.S. 1976. Particle Growth in Flames H. Experimental Results for Silica Particles. Combustion Science and Technology, 14, 243.

    Article  CAS  Google Scholar 

  36. Ulrich, G.D., and Subramanian, N.S. 1977. “Particle growth in flames III. coalescence as a rate controlling process”. Combust. Sci Technol., 17, 119–126.

    Article  CAS  Google Scholar 

  37. Wu, M. K., Windier, R. S., Steiner, C. K. R., Bors, T., & Friedlander, S. K. 1993. Controlled synthesi, of nanosized particles by aerosol processes. Aerosol Sci. Technol., 19, 527–548.

    Article  CAS  Google Scholar 

  38. Xiong, Y., & Pratsinis, S. E. 1993a. Formation of agglomerate particles by coagulation and sintering 1. A 2-dimensional solution of the population balance equation. J. Aerosol Sci., 24, 283–300.

    Article  CAS  Google Scholar 

  39. Xiong, Y., & Pratsinis, S. E. 1993b. Formation of agglomerate particles by coagulation and sintering 2. The evolution of the morphology of aerosol-made titania, silica, and silica-doped titania powders. J Aerosol Sci., 24, 301–313.

    Article  CAS  Google Scholar 

  40. Zhang, S. H., Akutsu, Y., Russell, L. M., & Flagan, R. C. 1995. Radial differential mobility analyzer. Aerosol Sci. Technol., 23, 357–372.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Flagan, R.C. (1998). Nanoparticles and Nanostructures: Aerosol Synthesis and Characterization. In: Chow, GM., Noskova, N.I. (eds) Nanostructured Materials. NATO ASI Series, vol 50. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5002-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5002-6_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6100-1

  • Online ISBN: 978-94-011-5002-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics