Advertisement

Nanoparticles and Nanostructures: Aerosol Synthesis and Characterization

  • Richard C. Flagan
Part of the NATO ASI Series book series (ASHT, volume 50)

Abstract

The remarkable properties of materials synthesized from nanometer-sized particles were discovered using particles that were formed as aerosols. Although other routes for nanoparticle synthesis have evolved, aerosol routes remain a major method. The original processes employed by Gleiter and coworkers entailed evaporation of a metal into a low density gas where the vapors formed nanoparticles by homogeneous nucleation. Those nanoparticles were then collected by thermophoresis for subsequent consolidation. In a study that predated the use of vapor condensation as a step in the production of consolidated nanostructures, Granqvist and Buhrman provided empirical observations of the role of major control variables. A number of points of confusion remain in this method of nanoparticle synthesis, notably the distinctions between particle size, and the sizes of the microstructures that attract the attention of materials scientists.

This paper will examine the aerosol physics of nanoparticle synthesis with emphasis on unraveling this distinction. The physical processes that govern particle formation growth, structure, and deposition will be examined. The on-line characterization of aerosol nanoparticles will also be probed, with a view toward monitoring of the synthesis process.

Keywords

Particle Growth Homogeneous Nucleation Nanoparticle Synthesis Primary Particle Size Differential Mobility Analyzer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alonso, M., & Kousaka, Y. 1996. Mobility shift in the differential mobility analyzer due to Brownian diffusion and space charge effects. J. Aerosol Sci., 27, 1201–1225.CrossRefGoogle Scholar
  2. 2.
    Birringer, R., Gleiter, H., Klein, H. P., & Marquardt, P. 1984. Phys. Lett., 102A, 365–369.Google Scholar
  3. 3.
    Camata, R. 1997. Aerosol Synthesis and Characterization of Silicon Nanocrystals. Ph.D. thesis, California Institute of Technology.Google Scholar
  4. 4.
    Ellerby, H. M., Weakliem, C. L., & Reiss, H. 1991. Toward a molecular theory of vapor phase nucleation. 1. Identification of the average embryo. J. Chem. Phys., 95, 9209–9218.CrossRefGoogle Scholar
  5. 5.
    Flagan, R. C., & Lundell, M. M. 1995. Particle structure control in nanoparticle synthesis from the vapor phase. Mater. Sci. Eng. A., 204, 113–124.CrossRefGoogle Scholar
  6. 6.
    Flagan, R. C., & Seinfeld, J. H. 1988. Fundamentals of Air Pollution Enganeering. Engelwood Cliffs, NJ: Prentice-Hall.Google Scholar
  7. 7.
    Forrest, S. R., & Witten, T. A. 1979. J. Phys. A.: Math. Gen., 12, L109 - L117.CrossRefGoogle Scholar
  8. 8.
    Frenkel, J. 1945. J. Phys., 9, 385.Google Scholar
  9. 9.
    Granqvist, C. G., & Buhrman, R. A. 1976. Ultrafine metal particles. J. Appl. Phys., 47. 2200–2219.CrossRefGoogle Scholar
  10. 10.
    Hiram, Y., & Nir, A. 1983. J. Colloid Interface Sri., 95, 462.CrossRefGoogle Scholar
  11. 11.
    Johnson, D.L. 1968. New Method of Obtaining Volume, Grain-Boundary, and Surface Diffusion Coefficients from Sintering Data. J. Appl. Phys., 40, 192–200.CrossRefGoogle Scholar
  12. 12.
    Katz, J. L. 1992. Homogeneous nucleation theory and experiment - A survey. Pure Appl. Chem., 64. 1661.CrossRefGoogle Scholar
  13. 13.
    Katz, J. L., & Donohue, M. D. 1982. Nucleation with simultaneous chemical reaction. J. Colloid Interface Sci., 85, 267–277.CrossRefGoogle Scholar
  14. 14.
    Kingery, W.D., & Berg, M. 1955. Study of the Initial Stages of Sintering Solids by Viscous Flow. Evaporation-Condensation, and Self-Diffusion. J. Appl. Phys., 26(10), 1205–1212.CrossRefGoogle Scholar
  15. 15.
    Knutson, E. O., & Whitby, K. T. 1975. Aerosol classification by electric mobility: apparatus, theory, and applications. J. Aerosol Sci., 6, 443–451.CrossRefGoogle Scholar
  16. 16.
    Kobata, A., Kusakabe, K., & Morooka, S. 1991. Growth and transformation of TiO2 crystallites in aerosol reactor. AIChE J., 37, 347–359.CrossRefGoogle Scholar
  17. 17.
    Koch, W., & Friedlander, S. K. 1990. The effect of particle coalescence on the surface area of a coagulating aerosol. J. Colloid Interface Sri., 140, 419–427.CrossRefGoogle Scholar
  18. 18.
    Koch, W., & Friedlander, S. K. 1991. Particle growth by coalescence and agglomeration. Part. Part. Syst., 8, 86–89.CrossRefGoogle Scholar
  19. 19.
    Kruis, F. E., Kusters, K. A., Pratsinis, S. E., & Scarlett, B. 1993. A simple model for the evolution of the characteristics of aggregate particles undergoing coagulation and sintering. Aerosol Sei. Technol., 19, 514–526.CrossRefGoogle Scholar
  20. 20.
    Kuczinski, G.C. 1949. Self-Diffusion in Sintering of Metallic Particles. Trans. Am. Inst. Mater.. Eng., 185, 169–178.Google Scholar
  21. 21.
    Lai, F. S., Friedlander, S. K., Pich, J., & Hidy, G. M. 1972. The self-preserving particle size distribution for Brownian coagulation in the free-molecule regime. J. Colloid Interface Sri., 39, 395.CrossRefGoogle Scholar
  22. 22.
    Matsoukas, T., & Friedlander, S. K. 1991. J. Colloid Interface Sci., 146, 495.CrossRefGoogle Scholar
  23. 23.
    McClurg, R. B. 1997. Homogeneous Nucleation Theory.Google Scholar
  24. 24.
    McClurg, R. B., C., R., & Goddard, W. A. 1997. Influences of binding transit ions on t homogeneous nucleation of mercury. Nanostructured Maier., 9, 53–61.CrossRefGoogle Scholar
  25. 25.
    Meakin, P. 1986. Pages 111–135 of: Stanley, H., & Ostrowsky, N. (eds), On Growth and Form. Boston, MA: Martinus Nijhoff.Google Scholar
  26. 26.
    Mountain, R. D., Mulholland, G. W., & Baum, H. 1986. J. Colloid Interface Sri., 114, 67.CrossRefGoogle Scholar
  27. 27.
    Nguyen, H. V., & Flagan, R. C. 1991. Particle formation and growth in single stage aerosol reactors. Langmuir, 7, 1807–1814.CrossRefGoogle Scholar
  28. 28.
    Pluyni, T. C., Lyons, S. W., Powell, Q. H., Gurav, A. S., Kodas, T. T., Wang, L. M., & Glocksman, H. D. 1993. Palladium metal and palladium oxide particle production by spray pyrolysis. Mater. Res. Bull., 28, 369–376.CrossRefGoogle Scholar
  29. 29.
    Rao, N. P., & McMurry, P. H. 1990. Effect of the Tolman surface-tension correction on nucleation in chemically reacting systems. Aerosol Sci. Technol., 13, 183–195.CrossRefGoogle Scholar
  30. 30.
    Rossell-Llompart, J., Loscertales, I. G., Bingham, D., & d. l. Mora, J. F. 1996. Sizing nanoparticles and ions with a short differential mobility analyzer. J. Aerosol Sci., 27, 695–719.CrossRefGoogle Scholar
  31. 31.
    Shen, Y. C., & Oxtoby, D. W. 1996. Nucleation of Lennard-Jones fluids–A density-functional approach. J. Chem. Phys, 105, 6517–6524.CrossRefGoogle Scholar
  32. 32.
    Ulrich, G. D. 1971. Theory of Particle Formation and Growth in Oxide Synthesis Flames. Combust. Sci Technol., 4, 47–57.CrossRefGoogle Scholar
  33. 33.
    Ulrich, G. D. 1984. Flame synthesis of fine particles. Chem. Engr. News, 62, 22–29.CrossRefGoogle Scholar
  34. 34.
    Ulrich, G. D., & Riehl, J. W. 1982. Aggregation of Growth of Submicron Oxide Particles in Flames. J. Colloid Interface Sri., 87, 257.CrossRefGoogle Scholar
  35. 35.
    Ulrich, G.D., Milnes, B.A., & Subramanian, N.S. 1976. Particle Growth in Flames H. Experimental Results for Silica Particles. Combustion Science and Technology, 14, 243.CrossRefGoogle Scholar
  36. 36.
    Ulrich, G.D., and Subramanian, N.S. 1977. “Particle growth in flames III. coalescence as a rate controlling process”. Combust. Sci Technol., 17, 119–126.CrossRefGoogle Scholar
  37. 37.
    Wu, M. K., Windier, R. S., Steiner, C. K. R., Bors, T., & Friedlander, S. K. 1993. Controlled synthesi, of nanosized particles by aerosol processes. Aerosol Sci. Technol., 19, 527–548.CrossRefGoogle Scholar
  38. 38.
    Xiong, Y., & Pratsinis, S. E. 1993a. Formation of agglomerate particles by coagulation and sintering 1. A 2-dimensional solution of the population balance equation. J. Aerosol Sci., 24, 283–300.CrossRefGoogle Scholar
  39. 39.
    Xiong, Y., & Pratsinis, S. E. 1993b. Formation of agglomerate particles by coagulation and sintering 2. The evolution of the morphology of aerosol-made titania, silica, and silica-doped titania powders. J Aerosol Sci., 24, 301–313.CrossRefGoogle Scholar
  40. 40.
    Zhang, S. H., Akutsu, Y., Russell, L. M., & Flagan, R. C. 1995. Radial differential mobility analyzer. Aerosol Sci. Technol., 23, 357–372.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • Richard C. Flagan
    • 1
  1. 1.California Institute of TechnologyPasadenaUSA

Personalised recommendations