Advertisement

Nanocrystalline Ceramics for Structural Applications: Processing and Properties

  • M. J. Mayo
Part of the NATO ASI Series book series (ASHT, volume 50)

Abstract

Several techniques for the consolidation and sintering of nanocrystalline ceramics are reviewed. For pressureless sintering, the presence of large, interagglomerate pores in the nanoceramic powder compact is shown to be the root cause of high sintering temperatures and slow densification rates. The strong dependence of densification rate on pore size is demonstrated, with smaller pores yielding faster densification rates and higher densifies at a given grain size. In contrast, variations of the ceramic’s sintering schedule are generally unproductive or counterproductive with respect to altering the density-grain size trajectory. Two consolidation methods which successfully produce fully dense, nanocrystalline ceramics include dry pressing at high (1 GPa) pressures prior to pressureless sintering, or sinterforging. Both approaches greatly reduce or eliminate the large (interagglomerate) pores present in the starting compact. Wet processing techniques, though not yet widely used for nanoparticles, also show promise in this regard, due to the minimal force required to obtain efficient particle packing. Some properties and applications of nanocrystalline ceramics are also discussed; these include sintering temperature (in the absence of agglomeration), hardness, fracture toughness, superplasticity, thermal conductivity, and diffusion bonding ability.

Keywords

Fracture Toughness Compaction Pressure Electrophoretic Deposition Nanocrystalline Powder Agglomerate Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    DOE Council on Materials Science (1988). Department of Energy, Monterey, CA. Same article is reprinted in J. Mater. Res. 4 (1989) 704.Google Scholar
  2. [2]
    R. A. Andrievski (1994). “Review: Nanocrystalline High Melting Point Compound-Based Materials,” J. Mater. Sci. 29 614–631.CrossRefGoogle Scholar
  3. [3]
    M. J. Mayo (1996). “Processing of Nanocrystalline Ceramics from Ultrafine Particles.” International Materials Reviews 41 85–115.CrossRefGoogle Scholar
  4. [4]
    P. Matteazzi, D. Basset, F. Miani, and G. L. Caër (1993). “Mechanosynthesis of Nanophase Materials,” Nanostructured Materials 2 217–229.CrossRefGoogle Scholar
  5. [5]
    J. Parker (1995). Nanophase Technologies, personal communication.Google Scholar
  6. [6]
    C. Herring (1950). “Effect of Change of Scale on Sintering Phenomena,” J. Appl. Phys. 21 85–87.Google Scholar
  7. [7]
    G. L. Messing and M. Kumagai (1994). “Low Temperature Sintering of α-Alumina-Seeded Boehmite Gels,” Am. Ceram. Soc. Bull. 73 88–91.Google Scholar
  8. [8]
    D. C. Hague (1995). “Sinter-Forging of Nanocrystalline Ceramics,” Ph.D. Thesis. The Pennsylvania State University.Google Scholar
  9. [9]
    S. Lowell and J. E. Shields (1979). Powder Surface Area and Porosity. Chapman and Hall, New York.Google Scholar
  10. [10]
    M. F. Yan and W. W. Rhodes (1983). “Low Temperature Sintering of TiO2,” Mater. Sci and Eng. 61 59–66.CrossRefGoogle Scholar
  11. [11]
    D. C. Hague (1992). “Chemical Precipitation, Densification, and Grain Growth in Nanocrystalline Titania Systems,” M.S. Thesis. The Pennsylvania State University.Google Scholar
  12. [12]
    E. A. Barringer, R. Brook, and H. K. Bowen (1984). “The Sintering of Monodisperse TiO2,” in Sintering and Heterogeneous Catalysis, G. C. Kuczynski, A. E. Miller, and G. A. Sargent, Eds. Plenum Press, New York. pp. 1–21.Google Scholar
  13. [13]
    R. C. Flagan and M. M. Lunden (1995). “Particle Structure Control in Nanoparticle Synthesis from the Vapor Phase,” Mater. Sci. and Eng. A204 113–124.CrossRefGoogle Scholar
  14. [14]
    M. S. Kaliszewski and A. H. Heuer (1990). “Alcohol Interaction with Zirconia Powders.” J. Am. Ceram. Soc. 73 1504–9.CrossRefGoogle Scholar
  15. [15]
    S. Kwon and G. L. Messing (1997). “The Effect of Particle Solubility on the Strength of Nanocrystalline Agglomerates: Boehmite,” Nanostructured Materials 8 399–409.CrossRefGoogle Scholar
  16. [16]
    J. H. Adair, H. G. Krarup, S. Venigalla, and T. Tsukada (1997). “A Review of the Aqueous Chemistry of the Zirconium-Water System,” in Aqueous Chemistry and Geochemistry of Oxides, Oxyhydroxides, and Related Materials (Mater. Res. Soc. Symp. Proc. 432), J.A. Voigt, T. E. Wood, B. C. Bunker, W. H. Casey, and L. J. Crossey, Eds. Materials Research Society, Pittsburgh, PA.Google Scholar
  17. [17]
    C. E. Baumgartner (1988). “Fast Firing and Conventional Sintering of Lead Zirconate Titanate Ceramic,” J. Am. Ceram. Soc. 71 350–353.CrossRefGoogle Scholar
  18. [18]
    H. Mostaghaci and R. J. Brook (1983). “Production of Dense and Fine Grain Size BaTiO3 by Fast Firing,” Trans. Brit. Ceram. Soc. 82 167–70.Google Scholar
  19. [19]
    H. Mostaghaci and R. J. Brook (1986). “Microstructure Development and Dielectric Properties of Fast-Fired BaTiO3 Ceramics,” J. Mater. Sci. 21 3575–3580.CrossRefGoogle Scholar
  20. [20]
    M. P. Harmer and R. J. Brook (1981). “Fast Firing— Microstructural Benefits,” J. Brit. Ceram. Soc. 80 147–149.Google Scholar
  21. [21]
    P. Vergnon, M. Astier, and S. J. Teichner (1974). “Initial Stage for the Sintering of Ultrafine Particles (TiO2 and Al2O3),” in Fine Particles, W. E. Kuhn, Ed. Electrochemical Society, Princeton, NJ. pp. 299–307.Google Scholar
  22. [22]
    D.-J. Chen and M. J. Mayo (1996). “Rapid Rate Sintering of Nanocrystalline ZrO2-3mol%Y2O3,” J. Am. Ceram. Soc. 79 906–12.CrossRefGoogle Scholar
  23. [23]
    D.-J. Chen and M. J. Mayo (1993). “Densification and Grain Growth of Ultrafine 3 mol% Y2O3 -ZrO2 Ceramics,” Nanostructured Mater. 2, 469–478.CrossRefGoogle Scholar
  24. [24]
    R. W. Siegel, S. Ramasamy, H. Hahn, Z. Zonghuan, and L. Ting (1988). “Synthesis, Characterization, and Properties of Nanophase TiO2,” J. Mater Res. 3, 1367.CrossRefGoogle Scholar
  25. [25]
    H. Hahn, J. Logas, and R. S. Averback (1990). “Sintering Characteristics of Nanocrystalline TiO2,” J. Mater. Res. 5 609–614.CrossRefGoogle Scholar
  26. [26]
    (no author) (1991). “Preparation and Sintering of Ultrafine SiC Particles,” Progress in Materials Science 35 66–70.Google Scholar
  27. [27]
    A. Pechenik, G. J. Piermarini, and S. C. Danforth (1992). “Fabrication of Transparent Silicon Nitride from Nanosize Particles,” J. Am. Ceram. Soc. 75 3283–88.CrossRefGoogle Scholar
  28. [28]
    R. A. Andrievski (1994). “Compaction and Sintering of Ultrafine Powders,” Intl. J. Powder Metall. 30 59–66.Google Scholar
  29. [29]
    D. Train (1957). “Transmission of Forces Through A Powder Mass During the Process of Pelleting,” Trans. Instn. Chem. Engrs. 35 258–266.Google Scholar
  30. [30]
    D. C. Hague and M. J. Mayo (1993). “Sinter-Forging of Chemically Precipitated Nanocrystalline TiO2,” in Mechanical Properties and Deformation Behavior of Materials Having Ultrafine Microstructures, M. Nastasi, D. Parkin, and H. Gleiter, Eds. Klewer, Dordrecht, The Netherlands. pp. 539–545.CrossRefGoogle Scholar
  31. [31]
    D. C. Hague and M. J. Mayo (1993). “The Effect of Crystallization and a Phase Transformation on the Grain Growth of Nanocrystalline Titania,” Nanostructured Mater. 3 61–7.CrossRefGoogle Scholar
  32. [32]
    M. J. Mayo, D. C. Hague, and D.-J. Chen (1993). “Processing Nanocrystalline Ceramics for Applications in Superplasticity,” Mater. Sci. & Eng. A166 145–159.CrossRefGoogle Scholar
  33. [33]
    R. S. Averback, H. J. Höfler, and R. Tao (1993). “Processing of Nano-Grained Materials,” Mater. Sci. and Engineering A166 169–177.CrossRefGoogle Scholar
  34. [34]
    M. M. R. Boutz, A. J. A. Winnubst, A. J. Burggraaf, M. Nauer, and C. Carry (1993). “Low Temperature Sinter Forging of Nanostructured Y-TZP,” in Science and Technology of Zirconia V, S. Badwal, J. Bannister, and R. Hannink, Eds. Technomic Pub. Co., Lancaster, PA. pp. 275–283.Google Scholar
  35. [35]
    A. J. A. Winnubst, Y. J. He, P. M. V. Bakker, R. J. M. O. Scholtenhuis, and A. J. Burggraaf (1993). “Sinter Forging as a Tool for Improving the Microstructure and Mechanical Properties of Zirconia Toughened Alumina,” in Science and Technology of Zirconia V, S. Badwal, J. Bannister, and R. Hannink, Eds. Technomic Pub. Co., Lancaster, PA. pp. 284–291.Google Scholar
  36. [36]
    O.-H. Kwon, C. S. Nordahl, and G. L. Messing (1995). “Submicrometer Transparent Alumina by Sinter-Forging Seeded γ-Al2O3 Powders,” J. Am. Ceram. Soc. 78 491–94.CrossRefGoogle Scholar
  37. [37]
    G. Skandan, H. Hahn, B. H. Kear, M. Roddy, and W. R. Cannon (1994). “Processing of Nanostructured Zirconia Ceramics,” in Molecularly Designed Ultrafine/Nanostructured Materials, (Mat. Res. Soc. Symp. Proc. 351), K. E. Gonsalves, G.-M. Chow, T. D. Xiao, and R. C. Cammarata, Eds. Materials Research Society, Pittsburgh, PA. pp. 207–12.Google Scholar
  38. [38]
    M. J. Mayo and D. C. Hague (1994). “Superplastic Sinter-Forging of Nanocrystalline Ceramics,” in Superplasticity in Advanced Materials ICSAM-94, (Materials Science Forum 170–172). Trans Tech Publications, Switzerland. pp. 141–146.Google Scholar
  39. [39]
    D. M. Owen and A. H. Chokshi (1993). “An Evaluation of the Densification Characteristics of Nanocrystalline Materials,” Nanostructued Mater. 2 181–7.CrossRefGoogle Scholar
  40. [40]
    M. Uchic, H. J. Hofler, W. J. Flick, R. Tao, P. Kurath, and R. S. Averback (1992). “Sinter-Forging of Nanophase TiO2,” Scripta Metall. et Mater. 26 791–6.CrossRefGoogle Scholar
  41. [41]
    D. C. Hague and M. J. Mayo (1995). “Modelling Densification During Sinter-Forging of Yttria-Partially-Stabilized Zirconia,” Mater. Sci. and Eng. A204 83–9.CrossRefGoogle Scholar
  42. [42]
    D. C. Hague and M. J. Mayo (1997). “Sinter-Forging of Nanocrystalline Zirconia: I. Experimental,” J. Am. Ceram. Soc. 80 149–156.CrossRefGoogle Scholar
  43. [43]
    B. Budiansky, J. W. Hutchinson, and S. Slutsky (1982). “Void Growth and Collapse in Viscous Solids,” in Mechanics of Solids, the Rodney Hill 60th Anniversary Volume, H. G. Hopkins and M. J. Sewell, Eds. Pergamon Press, Oxford. pp. 13–45.Google Scholar
  44. [44]
    D. S. Wilkinson and C. H. Caceres (1984). “On the Mechanism of Strain-Enhanced Grain Growth in Microdupleex and Second Phase Dispersed Alloys”,“ Acta Metall. 32 1335–1345.CrossRefGoogle Scholar
  45. [45]
    K. T. Miller and C. F. Zukoski (1994). “Osmotic Consolidation of Suspensions and Gels,” J. Am. Ceram. Soc. 77 2473–8.CrossRefGoogle Scholar
  46. [46]
    K. T. Miller, R. M. Melant, and C. F. Zukoski (1996). “Comparison of the Compressive Yield Response of Aggregated Suspensions: Pressure Filtration, Centrifugation, and Osmotic Consolidation,” J. Am. Ceram. Soc., 2545–2556.Google Scholar
  47. [47]
    J. H. Adair, personal communicationGoogle Scholar
  48. [48]
    Z. Surowiak (1973). “On the Technology of Deposition of Polycrystalline Thin Films of Ferro-and Anti-Ferroelectrics on Metallic Substrates,” Acta Physical Polonica A34. Google Scholar
  49. [49]
    W. Ryan, E. Massoud, and C. T. S. B. Perera (1979). “Electrophoretic Deposition Could Speed Up Ceramic Casting,” Interceram 2 117–119.Google Scholar
  50. [50]
    J. Miziguchi, K. Sumi, and T. Muchi (1993). “A Highly Stable Nonaqueous Suspension for the Electrophoretic Deposition of Powdered Substances,” J. Electrochem. Soc. 130 1819–1825.CrossRefGoogle Scholar
  51. [51]
    U. Eisele and C. Randall (1997), personal communication.Google Scholar
  52. [52]
    D. J. Green, R. Hannik, and M. Swain (1988). Transformation Toughening of Ceramics. CRC Press, Boca Raton.Google Scholar
  53. [53]
    B. A. Cottom and M. J. Mayo (1996). “Fracture Toughness of Nanocrystalline ZrO2-3mol%Y2O3 Determined by Vickers Indentation,” Scripta Met. et Mater. 34 809–814.Google Scholar
  54. [54]
    J. Wang, M. Rainforth, and R. Stevens (1989). “The Grain Size Dependence of the Mechanical Properties in TZP Ceramics,” Br. Ceram. Trans. J. 88 1–6.Google Scholar
  55. [55]
    A. Bravo-Leon (1997), unpublished work.Google Scholar
  56. [56]
    Y. Morikawa (1996), unpublished work.Google Scholar
  57. [57]
    G. R. Anstis et al. (1981). “A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness. Parts I and II.,” J. Am. Ceram. Soc. 64 533–543.CrossRefGoogle Scholar
  58. [58]
    C. E. Pearson (1934). “The Viscous Properties of Extruded Eutectic Alloys of Lead-Tin and Bismuth-Tin,” J. Inst. Met. 54 111.Google Scholar
  59. [59]
    C. Carry and M. Mocellin (1985). “High Ductilities in Fine Grained Ceramics,” in Superplasticity/Superplasticité, B. Baudelet and M. Suery, Eds. Centre National de la Recherche Scientifique, Paris. pp. 16.1–16.19.Google Scholar
  60. [60]
    F. Wakai, S. Sakaguchi, and Y. Matsuno (1986). “Superplasticity of Yttria-Stabilized Tetragonal ZrO2 Polycrystals,” Adv. Ceram. Mater. 1 259–263.Google Scholar
  61. [61]
    O. D. Sherby and J. Wadsworth (1990). “Observations on Historical and Contemporary Developments in Superplasticity,” in Superplasticity in Metals, Ceramics, and Intermetallics (MRS. Symp. Soc. Proc. 196), M. J. Mayo, M. Kobayashi, and J. Wadsworth, Eds. MRS, Pittsburgh, PA. pp. 3–14.Google Scholar
  62. [62]
    Y. Nakatani, T. Ohnishi, and K. Higashi (1984). Jpn. Inst. Met. 48 113.Google Scholar
  63. [63]
    T. G. Nieh, C. M. McNally, and J. Wadsworth (1989). “Superplasticity in Internetallic Alloys and Ceramics,” JOM 41 31–35.CrossRefGoogle Scholar
  64. [64]
    M. Çiftçioglu and M. J. Mayo (1990). “Processing of Nanocrystalline Ceramics,” in Superplasticity in Metals, Ceramics, and Intermetallics, (Mater Res. Soc. Symp. Proc. 196), M. J. Mayo, M. Kobayashi, and J. Wadsworth, Eds. MRS, Pittsburgh, PA. pp. 77–86.Google Scholar
  65. [65]
    H. Hahn and R. S. Averback (1991). “Low-Temperature Creep of Nanocrystalline Titanium(IV) Oxide,” J. Am. Ceram. Soc. 74 2918–21.CrossRefGoogle Scholar
  66. [66]
    C. Carry and A. Mocellin (1987). “Structural Superplasticity in Single Phase Crystalline Ceramics,” Ceram. Intl. 13 89–98.CrossRefGoogle Scholar
  67. [67]
    Z. Cui and H. Hahn (1992). “Tensile Deformation of Nanostructured TiO2 at Low Temperatures,” Nanostructured Mater. 1 419–425.CrossRefGoogle Scholar
  68. [68]
    J. Karch and R. Bitringer (1990). “Nanocrystalline Ceramics: Possible Candidates for Net-Shape Forming,” Ceram. Intl. 16 291–4.CrossRefGoogle Scholar
  69. [69]
    J. G. Castle, T. Beime, and J. M. Hutchen, “Proceedings of the First and Second Conferences on Carbon, 1953 and 1955,”,University of Buffalo, Buffalo, NY, 1956. As presented in W.E. Kuhn, “Consolidation of Ultrafine Particles,” Ultrafine Particles—Proceedings of a Symposium Sponsored by the Electrothermics and Metallurgy Division of the Electrochemical Society. W.E. Kuhn, Ed. New York: Wiley and Sons, 1963, pp. 41–103.Google Scholar
  70. [70]
    S. Raghavan, R. Dinwiddie, W. Porter, H. Wang, and M. Mayo (1997). “The Effect of Grain Size, Porosity and Yttria Content on the Thermal Conductivity of Nanocrystalline Zirconia.” Scripta Met et Mater., submitted.Google Scholar
  71. [71]
    T. H. Cross and M. J. Mayo (1994). “Ceramic-Ceramic Diffusion Bonding Using Nanocrystalline Interlayers,” Nanostructured Materials 3, 163–8.CrossRefGoogle Scholar
  72. [72]
    H. Ferkel and W. Riehemann (1996). “Bonding of Alumina Ceramics with Nanoscaled Alumina Powders,” Nanostructured Mater. 7 835–845.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • M. J. Mayo
    • 1
  1. 1.Dept. Materials Science & Eng.The Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations