Enhanced Transformation and Sintering of Transitional Alumina Through Mechanical Seeding

  • Martin L. Panchula
  • Jackie Y. Ying
Part of the NATO ASI Series book series (ASHT, volume 50)


Alumina is one of the most widely used ceramics, encompassing spark plugs, catalysts, heat sinks on computer chips, high temperature insulation, lighting envelopes and milling media. Because of this wide variety of applications, alumina is one of the most thoroughly studied ceramic materials. In particular, a significant amount of research has been performed since the 1950’s within the catalysis and ceramic fields with the goal of understanding and controlling such properties as surface acidity and basicity, surface area, crystallite size, agglomeration, thermal stability, phase transformation kinetics, and sinterability. This paper will focus on the phase transformations of alumina and show how the transformation kinetics can be increased to improve the sinterability of compacts prepared from the transitional alumina phases.


Milling Time Transformation Kinetic Pressureless Sinter High Energy Ball Milling Phase Transformation Kinetic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    McHale, J.M., Auroux, A., Perrotta, A.J., and Navrotsky, A. (1997) Surface Energies and Thermodynamic Phase Stability in Nanocrystalline Aluminas, Science, 277 788–791.CrossRefGoogle Scholar
  2. [2]
    McHale, J.M., Navrotsky, A., and Perrotta, A.J. (1996) Effects of Increased Surface Area and Chemisorbed H2O on the Relative Stability of Nanocrystalline γ-Al2O3 and α-Al2O3, J. Phys. Chem.,in press.Google Scholar
  3. [3]
    Tsuchida, T. and Kodaira, K. (1990) Hydrothermal Synthesis and Characterization of Diaspore, βAl2O3•H2O, J. Mater. Sci., 25 [10] 4423–4426.CrossRefGoogle Scholar
  4. [4]
    Wefers, K. and Misra, C. (1987) Oxides and Hydroxides of Aluminum, Alcoa Technical Paper 19, Rev. Alcoa Technical Center, p. 47.Google Scholar
  5. [5]
    Hirayama, T. (1987) High-Temperature Characteristics of Transition Al2O3 Powder with Ultrafine Spherical Particles, J. Am. Ceram. Soc., 70 [6] C-122–124.CrossRefGoogle Scholar
  6. [6]
    Warble, C.E. (1985) Surface Structure of Spherical Gamma-Alumina, J. Mater. Sci., 20 2512–2516.CrossRefGoogle Scholar
  7. [7]
    Borsela, E., Botti, S., Giorgi, R., Martelli, S., Turtu, S., and Zappa, G. (1993) Laser-driven Synthesis of Nanocrystalline Alumina Powders from Gas-Phase Precursors, Appl. Phys. Lett., 63 [10] 1345–1347.CrossRefGoogle Scholar
  8. [8]
    Johnston, G.P., Muenchausen, R., Smith, D.M., Fahrenholtz, W., and Foltyn, S. (1992) Reactive Laser Ablation Synthesis of Nanosize Alumina Powder, J. Am. Ceram. Soc., 75 [12] 3293–3298.CrossRefGoogle Scholar
  9. [9]
    Herring, C. (1950) Effect of Change of Scale on Sintering Phenomena, J. Appl. Phys., 21 301–303.CrossRefGoogle Scholar
  10. [10]
    Yarbrough, W.A. and Roy, R. (1987) Microstructural Evolution in Sintering of AIOOH Gels, J. Mater. Res., 2 [4] 494–515.CrossRefGoogle Scholar
  11. [11]
    Messing, G.L. and Huling, J.C. (1993) Transformation, Microstructure Development and Sintering in Nucleated Alumina Gels, in P. Duran and J.F. Fernandez (eds.), Proc. 3rd Europ. Ceram. Soc. Conf. Vol. 1 Processing of Ceramics Faenze Editrice Iberica S.L. pp. 669–679.Google Scholar
  12. [12]
    Xue, L.A. and Chen, I.-W. (1992) Influence of Chemical Additives on the γ-to-α Transformation of Alumina, J. Mater. Sci. Lett. 11 [8] 443–445.CrossRefGoogle Scholar
  13. [13]
    McArdle, J., Messing, G., Tietz, L., and Carter, C. (1989) Solid-Phase Epitaxy of Boehmite-Derived a-Alumina on Hematite Seed Crystals, J. Am. Ceram. Soc., 72 [5] 864–867.CrossRefGoogle Scholar
  14. [14]
    McArdle, J. and Messing, G. (1993) Transformation, Microstructure Development, and Densification in α-Fe2O3-Seeded Boehmite-Derived Alumina, J. Am. Ceram. Soc., 76 [1] 214–222.CrossRefGoogle Scholar
  15. [15]
    Kumagai, M. and Messing, G.L. (1984) Enhanced Densification of Boehmite Sol-Gels by α-Alumina Seeding, J. Am. Ceram. Soc., C-230–231.Google Scholar
  16. [16]
    Kumagai, M. and Messing, G.L. (1985) Controlled Transformation and Sintering of a Boehmite Sol-Gel by α-Alumina Seeding, J. Am. Ceram. Soc., 68 [9] 500–505.CrossRefGoogle Scholar
  17. [17]
    Shelleman, R.A., Messing, G.L., and Kumagai, M. (1986) Alpha Alumina Transformation in Seeded Boehmite Gels, J. Non-Cryst. Solids, 82 277–285.CrossRefGoogle Scholar
  18. [18]
    Shelleman, R.A. and Messing, G.L. (1988) Liquid-Phase-Assisted Transformation of Seeded y-Alumina, J. Am. Ceram. Soc., 71 [5] 317–322.CrossRefGoogle Scholar
  19. [19]
    Pach, L., Roy, R., and Komarneni, S. (1990) Nucleation of Alpha Alumina in Boehmite Gel, J. Mater. Res., 5 [2] 278–285.CrossRefGoogle Scholar
  20. [20]
    Prouzet, E., Fargeot, D., and Baumard, J.F. (1990) Sintering of Boehmite-Derived Transition Alumina Seeded with Corundum, J. Mater. Sci. Lett, 9 779–781.CrossRefGoogle Scholar
  21. [21]
    Kilbride, I.P. and Barker, A.J. (1994) Enhanced Densification by Seeding of Extruded Boehmite Gels Derived by Hydrothermal Decomposition of Basic Aluminium Acetate, Brit. Ceram. Trans., 93 [5] 187–191.Google Scholar
  22. [22]
    Messing, G.L. and Kumagai, M. (1994) Low-Temperature Sintering of α-Alumina-Seeded Boehmite Gels, Am. Ceram. Soc. Bull., 73 [10] 88–91.Google Scholar
  23. [23]
    Nordahl, C.S. and Messing, G.L. (1996) Transformation and Densification of Nanocrystalline θ-Alumina during Sinter Forging, J. Am. Ceram. Soc., 79 [12] 3149–3154.CrossRefGoogle Scholar
  24. [24]
    Kwon, O., Nordahl, C.S., and Messing, G.L. (1995) Submicrometer Transparent Alumina by Sinter Forging Seeded γ-Al2O3 Powders, J. Am. Ceram. Soc., 78 [2] 491–494.CrossRefGoogle Scholar
  25. [25]
    Pach, L., Kovalik, S., Majling, J., and Kozankova, J. (1993) Effect of Pressure on α-Alumina Nucleation in Boehmite Gel, J. Eur. Ceram. Soc., 12 249–255.CrossRefGoogle Scholar
  26. [26]
    Nishio, T. and Fujiki, Y. (1994) Phase Transformation Kinetics of Precursor Gel to α-Alumina, J. Mater. Sci., 29 [13] 3408–3414.CrossRefGoogle Scholar
  27. [27]
    Ishitobi, Y., Shimada, M., and Koizumi, M. (1979) Sintering of Dense Alumina by Direct Transformation from Eta to Alpha Al2O3 Under High Pressure, Proc. Round Table Meet. Spec., 113–133.Google Scholar
  28. [28]
    Beauchamp, E.K. and Carr, M.J. (1990) Kinetics of Phase Change in Explosively Shock-Treated Alumina, J. Am. Ceram. Soc., 73 [1] 49–53.CrossRefGoogle Scholar
  29. [29]
    Andryushkova, O.V., Ushakov, V.A., Kryukova, G.N., Kirichenko, O.A., and Poluboyarov, V.A. (1996) Solid Phase Transformation of Mechanically Activated Alumina During Thermal Treatment, Chem. Sust. Dev., 4 15–26.Google Scholar
  30. [30]
    Kacsalova, L. (1979) Transformation of Bayerite into α-Al2O3 Under Mechanical Impact, Acta Chim. Academ. Sci. Hung., 99 [2] 115–120.Google Scholar
  31. [31]
    Panchula, M.L. and Ying, J.Y. (1996) Mechanical Synthesis of Nanocrystalline α-Al2O3 Seeds for Enhanced Transformation Kinetics, Nanostruct. Mater., 9 [1–8] 161–164.Google Scholar
  32. [32]
    Tonejc, A., Kosanovic, C., Stubicar, M., Tonejc, A.M., Subotic, B., and Smit, I. (1994) Equivalence of Ball Milling and Thermal Treatment for Phase Transitions in the Al2O3 System, J. Alloys Comp., 204 L1–3.CrossRefGoogle Scholar
  33. [33]
    Tonejc, A., Stubicar, M., Tonejc, A.M., Kosanovic, K., Subotic, B., and Smit, I. (1994) Transformation of γ-AIOOH (Boehmite) and Al(OH)3 (Gibbsite) to α-Al2O3 (Corundum) Induced by High Energy Ball Milling, J. Mater. Sci. Lett., 13 [7] 519–520.CrossRefGoogle Scholar
  34. [34]
    Zielinski, P.A., Schulz, R., Kaliaguine, S., and Van Neste, A. (1993) Structural Transformations of Alumina by High Energy Ball Milling, J. Mater. Res., 8 [11] 2985–2992.CrossRefGoogle Scholar
  35. [35]
    Zdujic, M.V., Milosevic, O.B., and Karanovic, Lj.C. (1992) Mechanochemical Treatment of ZnO and Al2O3 Powders by Ball Milling, Mater. Lett., 13 125–129.CrossRefGoogle Scholar
  36. [36]
    Mehta, S.K., Kalsotra, A., and Murat, M. (1992) A New Approach to Phase Transformations in Gibbsite: The Role of Crystallinity, Therm. Acta, 205 191–203.CrossRefGoogle Scholar
  37. [37]
    Mackenzie, K.J.D. and Hosseini, G. (1976) Effect of Electric Fields on the Transformation of Gamma to Alpha Alumina, Trans. J Brit. Ceram. Soc., 77 [6] 172–176.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • Martin L. Panchula
    • 1
  • Jackie Y. Ying
    • 2
  1. 1.Department of Materials Science and EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations