Advertisement

Thermal Spray Processing of Nanocrystalline Materials

  • E. J. Lavernia
  • M. L. Lau
  • H. G. Jiang
Part of the NATO ASI Series book series (ASHT, volume 50)

Abstract

Technological advancements in many sectors of modern society depend strongly on the materials science and engineering community’s ability to conceive of novel materials with attractive combinations of physical and mechanical properties. For instance, in the aerospace industry, the ever increasing demand to manufacture lighter aircraft that can travel at higher speeds and can withstand a higher payload capacity has fueled the development of high strength/low density materials with improved damage tolerance and enhanced temperature capabilities. Driven in part by this critical need, research in materials science and engineering has shifted towards the study and application of non-equilibrium processes. The significant departure from thermodynamic equilibrium associated with these types of processes allows material scientists and engineers to develop materials with unusual combinations of microstructure and physical attributes.

Keywords

Thermal Spray Mechanical Alloy Thermal Barrier Coating Nanocrystalline Material Milled Powder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pawlowski, L. (1995) The Science and Engineering of Thermal Spray Coatings, John Wiley & Sons, England.Google Scholar
  2. 2.
    German, R.M. (1984) Powder Metallurgy Science, Metal Powder Industries Federation, Princeton, New Jersey.Google Scholar
  3. 3.
    Suryanarayana, C. (1995) Nanocrystalline materials, Int. Mat. Rev. 40, 41.CrossRefGoogle Scholar
  4. 4.
    Srivatsan, T.S. and Lavemia, E.J. (1992) Review--Use of spray techniques to synthesize particulate-reinforced metal-matrix composites, J. Mat. Sci. 27, 5965.CrossRefGoogle Scholar
  5. 5.
    Moskowitz, L.N. (1992) Application of HVOF thermal spraying to solve corrosion problems in the petroleum industry, in C.C. Berndt (ed.), Thermal Spray: International Advances in Coatings Technology, ASM International, Materials Park, Ohio, 611.Google Scholar
  6. 6.
    Matsubara, Y. and Tomiguchi, A. (1992) Surface texture and adhesive strength of high velocity oxy-fuel sprayed coatings for rolls of steel mills, in C.C. Berndt (ed.), Thermal Spray: International Advances in Coatings Technology, ASM International, Materials Park, Ohio, 637.Google Scholar
  7. 7.
    Byrnes, L. and Kramer, M. (1994) Method and apparatus for the application of thermal spray coatings onto aluminum engine cylinder bores, in C.C. Berndt and S. Sampath (eds.), Thermal Spray Industrial Applications, ASM International, Materials Park, Ohio, 39.Google Scholar
  8. 8.
    Chen, H., Liu, Z., Zhuang, Y. and Xu, L. (1992) Quality upgrading of plasma-sprayed thermal barrier ceramic coatings by hot isostatic pressing, Chinese J. of Mech. Eng. 5, 183.Google Scholar
  9. 9.
    Nicoll, A.R., Bachmann, A., Moens, J.R. and Loewe, G. (1992) The application of high velocity combustion spraying, in C.C. Berndt (ed.), Thermal Spray: International Advances in Coatings Technology, ASM International, Materials Park, Ohio, 149.Google Scholar
  10. 10.
    Niemi, K., Vuoristo, P. and Mantyla, T. (1992) Abrasion wear resistance of carbide coatings deposited by plasma and high velocity combustion processes, in C.C. Berndt (eds.), Thermal Spray: International Advances in Coatings Technology, ASM International, Materials Park, Ohio, 685.Google Scholar
  11. 11.
    Malhouroux-Gaffet, N. and Gaffet, E. (1993) Solid state reaction induced by post-milling annealing in the Fe-Si system, J. Alloys Comp. 198, 143.CrossRefGoogle Scholar
  12. 12.
    Smyth, R.T., Dittrich, F.J. and Weir, J.D. (1978) Thermal spraying-a new approach to thick film circuit manufacture, in International Conference on Advances in Surface Coating Technology, Welding Institute, London, England, 233.Google Scholar
  13. 13.
    Bennett, A.P. and Quigley, M.B.C. (1990) The spraying of boiler tubing in power stations, Welding & Metal Fabrication, 485.Google Scholar
  14. 14.
    Woman, D.J. (1985) Performance comparison of plasma spray and physical vapor deposition BC23 coatings in the LM2500, J. of Vac. Sci. and Tech. A3, 2532.Google Scholar
  15. 15.
    Roseberry, T.J. and Boulger, F.W. A plasma flame spray handbook, U.S. Department of Commerce Report No.MT-043,National Technical Information Service, Springfield, VA.Google Scholar
  16. 16.
    Tucker, R.C. (1982) in R. F. Bunshah (ed.), Deposition technologies for films and coatings, Noyes Publications, New Jersey, 454.Google Scholar
  17. 17.
    Marantz, D.R. (1974) in B.N. Chapman and J.C. Anderson (eds.), Science and Technology of Surface Coating, Academic Press, London, 308.Google Scholar
  18. 18.
    Smith, C.W. (1974) in B.N. Chapman and J.C. Anderson (eds.), Science and Technology of Surface Coating, Academic Press, London, 262.Google Scholar
  19. 19.
    Borisov, Y.S. (1990) Detonation spraying: equipment,materials, and applications, Thermische Spritzkonferenz, Essen, Germany.Google Scholar
  20. 20.
    Schwarz, E. (1980) in 9th International Thermal Spraying Conference, Nederlands Instituut voor Lastechniek: The Hague, Netherlands, 91.Google Scholar
  21. 21.
    Niederberger, K. and Shciffer, B. (1990) Eigenshaften Verschiedener Gase und Deren Einfluss Beim Thermischen Spritzen, in T. Spritzkonferenz (eds.), Essen, Germany.Google Scholar
  22. 22.
    Okada, M. and Maruo, H. (1968) New plasma sprays and its application, British Welding J. 15 371.Google Scholar
  23. 23.
    Parker, D.W. and Kutner, G.L. (1991) Adv. Mat. Process 139 68.Google Scholar
  24. 24.
    Varacalle, D.J., Ortiz, M.G., Miller, C.S., Steeper, T.J., Rotolico, A.J., Nerz, J. and Riggs (II), W.L. (1992) HVOF combustion spraying of Inconel powder, in C.C. Berndt (ed.), Thermal Spray: International Advances in Coatings Technology, ASM Intemational, Materials Park, Ohio, 181.Google Scholar
  25. 25.
    Apelian, D., Wei, D. and Farouk, B. (1989) Metall. Trans. 20B 251.Google Scholar
  26. 26.
    Vinayo, ME, (1985) in 7th International Symposium on Plasma Chemistry, ed. Eindhoven, Netherlands, 1161.Google Scholar
  27. 27.
    Kim, M.R., Smith, R.W. and Kapoor, D. (1996) Vacuum plasma spray forming of tungsten base functionally gradient composites, in C.C. Berndt (ed.), Thermal Spray: Practical Solutions for Engineering Problems, ASM International, Materials Park, Ohio, 7.Google Scholar
  28. 28.
    Crawmer, D.C., Krebsbach, J.D. and Riggs (II), W.L. (1992) Coating Development for HVOF Process Using Design of Experiments, in C.C. Berndt (ed.), Thermal Spray: International Advances in Coatings Technology, ASM Intemational, Materials Park, Ohio, 127.Google Scholar
  29. 29.
    Creffield, G.K., Cole, M.A. and White, G.R. (1995) The effect of gas parameters on HVOF coatings, in C.C. Berndt and S. Sampath (eds.), Advances in Thermal Spray Science & Technology, ASM International, Materials Park, Ohio, 291.Google Scholar
  30. 30.
    Hackett, C.M. and Settles, G.S. (1995) Research on HVOF gas shrouding for coating oxidation control, in C.C. Berndt and S. Sampath (eds.), Advances in Thermal Spray Science & Technology, ASM International, Materials Park, Ohio, 21.Google Scholar
  31. 31.
    Hackett, C.M. and Settles, G.S. (1994) Turbulent mixing of the HVOF thermal spray and coating oxidation, in C.C. Berndt and S. Sampath (eds.), Thermal Spray Industrial Applications, ASM International, Materials Park, 307–312.Google Scholar
  32. 32.
    Tellkamp, V., Lau, M., Fabel, A. and Lavernia, E.J. (1996) Thermal spraying of nanocrystalline Inconel 718, NanoStructured Mat. 9, 489.CrossRefGoogle Scholar
  33. 33.
    Lau, M.L., Jiang, H.G. and Lavernia, E.J. (1997) “Synthesis and characterization of nanocrystalline Ni, Inconel 718, and stainless steel coatings,” presented in Thermal Spray Processing of Nanoscale Materials, August 3–8, Davos, Switzerland.Google Scholar
  34. 34.
    Kear, B.H. and Strutt, P.R. (1994) Nanostructures: The next Generation of high performance bulk Materials and Coatings, Naval Research Reviews 4 4.Google Scholar
  35. 35.
    Lau, M.L. (1997) notes from Advance coating technology development program kick-off meeting, Arlington, Virginia.Google Scholar
  36. 36.
    Birringer, R. (1994) Structure of nanostructured materials, in G.C. Hadjipanayis and R.W. Siegel (eds.), Nanophase Materials: Synthesis-Properties-Applications, Kluwer Academic Publishers, The Netherlands, 157.Google Scholar
  37. 37.
    Birringer, R. (1989) Nanocrystalline Materials, Mat. Sci. & Eng. A117 33.CrossRefGoogle Scholar
  38. 38.
    Koch, C.C. (1989) Materials synthesis by mechanical alloying, Annu. Rev. Mat. Sei. 19, 121.CrossRefGoogle Scholar
  39. 39.
    Gaffet, E., Malhouroux, N. and Abdellaoui, M. (1993) Far from equilibrium phase transition induced by solid-state reaction in the Fe-Si system, J. Alloys and Compounds 194 339.CrossRefGoogle Scholar
  40. 40.
    Koch, C.C. (1993) The synthesis and structure of nanocrystalline materials produced by mechanical attrition: a review, Nanostructured Mat. 2, 109–129.CrossRefGoogle Scholar
  41. 41.
    Aikin, B.J.M., Courtney, T.H. and Maurice, D.R. (1991) Reaction rates during mechanical alloying, Mat. Sci. & Engr A147 229.CrossRefGoogle Scholar
  42. 42.
    Luton, M.J., Jayanth, C.S., Disko, M.M., Matras, S. and Vallone, J. (1989) Cryomilling of nano-phase dispersion strengthened aluminum, Mat. Res. Soc. Symp. Proc. 132 79.CrossRefGoogle Scholar
  43. 43.
    Huang, B., Vallone, J. and Luton, M.J. (1995) The effect of nitrogen and oxygen on the synthesis of B2 NiAl by cryomilling, NanoStructured. Mat. 5, 631.CrossRefGoogle Scholar
  44. 44.
    Perez, R.J., Huang, B. and Lavernia, E.J. (1996) Thermal stability of nanocrystalline Fe-10 wt.% Al produced by cryogenic mechanical alloying, NanoStructured Mat. 7 565.CrossRefGoogle Scholar
  45. 45.
    Rawers, J.C. (1995) Microstructure and tensile properties of compacted, mechanical alloyed, nanocrystalline Fe-Al, Metall. Trans. A 27A 3126.Google Scholar
  46. 46.
    Farrell, K. and Munroe, P.R. (1996) Grain growth in Fe-30at.% Al, Scripta Metall. 35 615.CrossRefGoogle Scholar
  47. 47.
    Melmed, A.J., Tambakis, N.C., Lau, M. and Lavemia, E.J. (1997) APFIM study of a nanocrystalline Fe-Al Alloy, submitted.Google Scholar
  48. 48.
    Ramm, D.A.J., Clyne, T.W., Sturgeon, A.J. and Dunkerton, S. (1994) Correlations between spraying conditions and microstructure for alumina coatings produced by HVOF and VPS, in C.C. Berndt and S. Sampath (eds.), Thermal Spray Industrial Applications, ASM International, Materials Park, Ohio, 239.Google Scholar
  49. 49.
    Knotek, O. and Schnaut, U. (1992) Process modeling of HVOF thermal spraying systems, in C.C. Berndt (ed.), Thermal Spray: International Advances in Coatings Technology, ASM International, Materials Park, Ohio, 811.Google Scholar
  50. 50.
    Liang, X., E.J. Lavemia, Wolfenstine, J. and Sickinger, A. (1995) Microstructure evolution during reactive plasma spraying of MoSi2 with methane, J. Therm. Spray Tech. 4 252.CrossRefGoogle Scholar
  51. 51.
    Pfender, E. and Lee, Y.C. (1985) Particle dynamics and particle heat and mass transfer in thermal plasmas. part i. the motion of a single particle without thermal effects, Plasma Chem. and Plasma Proc. 5, 211.CrossRefGoogle Scholar
  52. 52.
    Sobolev, V.V. and Guilemany, M. (1996) Dynamic processes during high velocity oxy-fuel spraying, Int. Mat. Rev. 41 13.CrossRefGoogle Scholar
  53. 53.
    Sobolev, V.V. and Guilemany, J.M. (1995) Formation of chemical inhomogeneity in the coating structure during high velocity oxy-fuel (HVOF) spraying, Mat. Lett. 25 285.CrossRefGoogle Scholar
  54. 54.
    Sobolev, V.V. and Guilemany, J.M. (1996) Influence of solidification on the flattening of droplets during thermal spraying, Mat. Lett. 28 71.CrossRefGoogle Scholar
  55. 55.
    Sobolev, V.V., Guilemany, J.M. and Martin, A.J. (1996) J. Therm. Spray Tech. 5 207.CrossRefGoogle Scholar
  56. 56.
    Sobolev, V.V., Guilemany, J.M. and Calero, J.A. (1996) Investigation of the development of coating structure during high velocity oxy-fuel (HVOF) spraying of WC-Ni powder particles, Surf. Coat. Tech. 82 114.CrossRefGoogle Scholar
  57. 57.
    Sobolev, V.V., Guilemany, J.M. and Martin, A.J. (1996) Analysis of splat formation during flattening of thermally sprayed droplets, Mat. Lett. 29 185.CrossRefGoogle Scholar
  58. 58.
    Sobolev, V.V., Guilemany, J.M. and Martin, A.J. (1996) Formation of powder particles during thermal interaction of liquid and solidified drops in the process of metal atomization, J. Mat. Proc. Tech. 62 216.CrossRefGoogle Scholar
  59. 59.
    Fukanuma, H. (1994) J. Thermal Spray Tech. 3 33.CrossRefGoogle Scholar
  60. 60.
    Trapaga, G. and Szekely, J. (1991) Mathematical modeling of the isothermal impingement of liquid droplets in spraying processes, Metall. Trans. 22B 904.Google Scholar
  61. 61.
    Trapaga, G., Matthys, E.F., Valencia, J.J. and Szekely, J. (1992) Fluid flow, heat transfer, and solidification of molten metal droplets impinging on substrates: comparison of numerical and experimental results, Metall. Trans. 23B 710.Google Scholar
  62. 62.
    Liu, H., Lavemia, E.J. and Rangel, R.H. (1993) Numerical simulation of substrate impact and freezing of droplets in plasma spray processes., J. of Phys. D: (Appl. Phys.) 26 1900.CrossRefGoogle Scholar
  63. 63.
    Delplanque, J.-P., Lavemia, E.J. and Rangel, R.H. (1995) Description of a micro-pore formation mechanism in a deforming and solidifying metal droplet, accepted for presentation at the 1995 ASME Winter Annual Meeting, San Francisco, California.Google Scholar
  64. 64.
    Liu, H., Rangel, R.H. and Lavernia, E.J. (1994) Modeling of reactive atomization and deposition processing of Ni3Al., Acta Metall. Mat. 42 3277.CrossRefGoogle Scholar
  65. 65.
    Liu, H., Lavemia, E.J. and Rangel, R.H. (1995) Modeling of molten droplet impingement on a non-flat surface, Acta Metall. Mat. 43 2053.CrossRefGoogle Scholar
  66. 66.
    Kim, G.H., Kim, H.S. and Kum, D.W. (1996) Determination of titanium solubility in alpha-aluminum during high energy milling, Sci. Mat. 34 421.Google Scholar
  67. 67.
    Guilemany, J.M., Nutting, J. and Dong, Z. (1997) Coating-substrate bonding after HVOF thermally spraying WC-Co on to a Ti-6%Al-4%V Alloy, J. Mat. Sci. Lett. 16 1043.CrossRefGoogle Scholar
  68. 68.
    Delplanque, J.-P., Lavemia, E.J. and Rangel, R.H. (1996) Multidirectional solidification model for the description of micropore formation in spray deposition processes, Numerical Heat Transfer, Part A 30 1.CrossRefGoogle Scholar
  69. 69.
    Clyne, T.W. (1996) Residual stresses in surface coatings and their effects on interfacial debonding, Key Eng. Mat. 116–117 307.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • E. J. Lavernia
    • 1
  • M. L. Lau
    • 1
  • H. G. Jiang
    • 1
  1. 1.Department of Chemical and Biochemical Engineering and Materials ScienceUniversity of California, IrvineIrvineUSA

Personalised recommendations