Advertisement

The-State-of-the-Art of Nanostructured High Melting Point Compound-Based Materials

  • R. A. Andrievski
Part of the NATO ASI Series book series (ASHT, volume 50)

Abstract

High-melting compounds (HMC) are carbides, nitrides, borides, oxides and other compounds with the melting point (T m) above 2000°C (or even 2500°C). These limits are very conditional because there are no physical reasons for this selection but only considerations of convenience. As cited in [1], two-component HMC systems number at least 130, with T m>2500°C, and about 240, with T m.>2000°C. The number of well-studied and practically used HMCs is much less. This overview concerns HMCs that were most extensively studied such as TiN, TiC, TiB2, WC, AlN, Al2O3, Si3N4, SiC, BN, B4C, ZrO2, MgO, CeO2, Y2O3 and some others. These compounds may be described as advanced ceramics and their promising properties and wide application are well known.

Keywords

Silicon Nitride Metallic Glass Nanocrystalline Material Surf Coat Nanophase Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andrievski, R.A. and Spivak, I.I. (1989) Strength of High-Melting Compounds and Materials on Their Base, Metallurgiya, Chelyabinsk (in Russian).Google Scholar
  2. 2.
    Andrievski, R.A. (1994) Review–Nanocrystalline high melting compound-based materials, J. Mater. Sci. 29, 614–631.CrossRefGoogle Scholar
  3. 3.
    Gleiter, H. (1981) Nanocrystalline materials, in N.Hansen, T.Leffers, and H.Lilholt (eds.), Deformation of Polycrystals: Mechanisms and Microstructures, Riso National Laboratory, Roskilde, pp. 15–21.Google Scholar
  4. 4.
    Birringer, R., Herr, U, and Gleiter, H. (1986) Processing and properties of nanocrystalline materials, Trans. Jpn. Inst. Met. Suppl. 27, 43–52.Google Scholar
  5. 5.
    Andrievski, R.A.(in press) The-state-of-the-art and perspectives in the field of particulate nanostructured materials, Powder Metallurgy(Minsk) (in Russian).Google Scholar
  6. 6.
    Nastasi, M., Parkin, D.M., and Gleiter, H.(eds.) (1993), Mechanical Properties and Deformation Behaviour of Materials Having Ultra-Fine Microstructures, Kluwer Academic Publishers, Dordrecht.Google Scholar
  7. 7.
    Hadjipanayis, G.C. and Siegel, R.W. (eds.) (1994), Nanophase Materials. Synthesis - Properties - Applications, Kluwer Academic Publishers, Dordrecht.Google Scholar
  8. 8.
    Gleiter, H. (1995) Nanostructured materials: state of the art and perspectives, Nanostruct. Mater. 6, 3–14.CrossRefGoogle Scholar
  9. 9.
    Siegel, R. (1996) Recent progress in nanophase materials, in C.Suryanarayana, J. Singh, and F.H. Froes (eds.), Processing and Properties of Nanocrystalline Materials, The Minerals, Metals & Materials Society, Warrendale, pp. 3–10.Google Scholar
  10. 10.
    Andrievski, R.A. (1996) Processing and properties evolution of nanocrystalline particulate and films materials based on nitrides and borides, in C.Suryanarayana, J. Singh, and F.H. Froes (eds.), Processing and Properties of Nanocrystalline Materials, The Minerals, Metals & Materials Society, Warrendale, pp. 135–142.Google Scholar
  11. 11.
    Andrievski, R.A. (1996) Possibility of powder technology in processing advanced nanocrystalline particulate materials, in A. Clayton and L. Youngberg (comps.), Advances in Powder Metallurgy and Particulate Materials -1996,vol.1, Metal Powder Industry Federation, Princeton, pp.(2–79)-(2–88).Google Scholar
  12. 12.
    Suryanarayana, C. (1995) Nanocrystalline materials, Int. Mater. Rev. 40, 41–64.CrossRefGoogle Scholar
  13. 13.
    Chang, W., Skandan, G., Danforth, S.C., Kear, B.H., and Halm, H. (1994) Chemical vapour processing and applications for nanostructured ceramic powders and whiskers, Nanostruct. Mater. 4, 507–520.CrossRefGoogle Scholar
  14. 14.
    Hahn, H. (1997) Gas-phase synthesis of nanocrystalline materials, Nanostruct. Mater. 9, 3–12.CrossRefGoogle Scholar
  15. 15.
    Chen, Y., Glumac, N., Kear, B.H., and Skandan, G. (1997) High rate synthesis of nanophase materials, Nanostruct. Mater. 9, 101–104.CrossRefGoogle Scholar
  16. 16.
    Gillan, E.C. and Kaner R.B. (1996) Synthesis of refractory ceramics via rapid metathesis reactions between solid-state precursors, Chem. Mater. 8, 333–343.CrossRefGoogle Scholar
  17. 17.
    Kotov, Yu.A., Azarkevich, E.I., Beketov, I.V., Demina, T.M., Murzakaev, A.M., and Samatov, O.M. (1997) Producing Al and Al2O3 nanopowders by electrical explosion of wire, Key Eng. Mater. 132–136, 173–176.CrossRefGoogle Scholar
  18. 18.
    Nowakowski, M., Su, K., Sneddon, L., and Bonnet, D. (1993) Synthesis, processing and phase evolution of TiN/TiB2 composites from polymeric precursors, in S. Komarneni, J.C. Parker, and G.J. Thomas (eds.), Nanophase and Nanocomposite Materials, Materials Research Society, Pittsburgh, pp. 425–430.Google Scholar
  19. 19.
    Matteazzi, P., Le Gaer, G., and Mocellin, A. (1997) Synthesis of nanostructured materials by mechanical alloying, Ceram. Int. 23, 39–44.CrossRefGoogle Scholar
  20. 20.
    Koch, C.C. (1997) Synthesis of nanostructured materials by mechanical milling: problems and opportunities, Nanostruct. Mater. 9, 13–22.CrossRefGoogle Scholar
  21. 21.
    Bill, J. and Aldinger, F. (1995) Precursor-derived covalent ceramics, Adv. Mater. 7, 775–787.CrossRefGoogle Scholar
  22. 22.
    Lavernia, E.J. (1998) Thermal spraying of nanocrystalline materials, in G.M. Chow (ed.), Nanostructured Materials: Science and Technology, Kluwer Academic Publishers, Dordrecht.Google Scholar
  23. 23.
    Mayo, M. (1998) Nanocrystalline ceramics for structural applications: protes-sing and properties, in G.M. Chow (ed.), Nanostructured Materials: Science and Technology, Kluwer Academic Publishers, Dordrecht.Google Scholar
  24. 24.
    Skorokhod, V.V. (1998) Features of nanocrystalline structure formation on sintering of ultrafine powders, in G.M. Chow (ed.), Nanostructured Materials: Science and Technology, Kluwer Academic Publishers, Dordrecht.Google Scholar
  25. 25.
    Urbanovich, V.S. (1998) Consolidation of nanocrystalline materials at high pressures, in G.M. Chow (ed.), Nanostructured Materials: Science and Technology, Kluwer Academic Publishers, Dordrecht.Google Scholar
  26. 26.
    Ivanov, V., Paranin, S., and Nozdrin, A. (1997) Principles of pulsed compaction of ceramic nano-sized powders, Key Eng. Mater. 132–136, 400–403.Google Scholar
  27. 27.
    Vassen, R., Kaiser, A., Forster, J., Buchkremer, H.P., and Stover, D. (1996) Densification of ultrafine SiC powders, J. Mater. Sci. 31, 3623–3637.CrossRefGoogle Scholar
  28. 28.
    Ragulya, A.V., Skorokhod, V.V., and Andrievski, R.A. (1997, in press) Rate-controlled sintering of nanocrystalline TiN powder, Nanostruct. Mater. 8.Google Scholar
  29. 29.
    Risbud, S.H., Shan, C.-H., Mukherjee, A.K., Kim, M.J., Bow, J.S., and Holl, R.A. (1995) Retention of nanostructure in aluminium oxide by very rapid sintering, J. Mater. Res. 10, 237–239.CrossRefGoogle Scholar
  30. 30.
    Schneider, J.A., Risbud, S.H., and Mukherjee (1996) Rapid consolidation processing of silicon nitride powders, J. Mater. Res. 11, 358–362.CrossRefGoogle Scholar
  31. 31.
    Kear, B.H. and McCandish, L.E. (1993) Nanostructured hard alloys, Nanostruct. Mater. 3, 19–25.CrossRefGoogle Scholar
  32. 32.
    Mohan, K. and Strutt, P.R. (1996) Observation of Co nanoparticle dispersions in WC nanograins in WC-Co cermets consolidated from chemically synthesised powders, Nanostruct. Mater. 7, 547–555.CrossRefGoogle Scholar
  33. 33.
    Porat, R., Berger,S. and Rosen, A. (1996) Dilatometric study of the sintering mechanism of nanocrystalline cemented carbides, Nanoctruct. Mater. 7, 429–436.CrossRefGoogle Scholar
  34. 34.
    Hague, D.C. and Mayo, M.J. (1995) Modelling densification during sinter-forging of yttria-partally-stabilized zirconia, Mater. Sci. Eng. A204, 83–89.Google Scholar
  35. 35.
    Boutz, M.M.R., Winnubst, L., and Burggraaf, A.J. (1995) Low-temperature sinter-forging of nanostructured Y-TZP and YCe-TZP, J. Am. Ceram. Soc. 78, 121–128.CrossRefGoogle Scholar
  36. 36.
    Hirai, H. and Kondo, K. (1994) Shock-compaction Si3N4 nanocrystalline ceramics: mechanisms of consolidation and of transition from α-to β- form, J. Am. Ceram. Soc. 77, 487–492.CrossRefGoogle Scholar
  37. 37.
    Andrievski, R.A. (1997) Physical-mechanical properties of nanostructured TiN, Nanostruct. Mater. 9, 607–610.CrossRefGoogle Scholar
  38. 38.
    Ogino, Y. (1996) Mechanical nitriding and its application to production of nano-crystalline metal-nitride dual phase alloys, in C. Suryanarayana, J. Singh, and F.H Froes (eds.), Processing and Properties of Nanocrystalline Materials, The Minerals, Metals & Materials Society, Warrendale, pp. 81–92.Google Scholar
  39. 39.
    Kizuka, T., Ichinose, H., and Ishida, Y. (1994) Structure and mechanical properties of nanocrystalline Ag/MgO composites, J. Mater. Sci. 29, 3107–3112.CrossRefGoogle Scholar
  40. 40.
    Cottom, B.A. and Mayo, M.J. (1996) Fracture toughness of nanocrystalline ZrO2-3%Y2O3 determined by Vickers indentation, Scripta Mater. 34, 809–814.CrossRefGoogle Scholar
  41. 41.
    Kovtun, V.I., Kurdiumov, A.V., Zeliayskiy, V.B., Ostrovskaja, N.F., and Trefilov, V.I. (1992) Sintering of BN in shock waves, No12, 38–44 (in Russian).Google Scholar
  42. 42.
    Inamura, S., Miyamoto, M., Imaida, Y., Takagawa, M., Hirota, K., and Yamaguchi, O. (1993) High fracture toughness of ZrO2 solid solution ceramics with nano-metre grain size in the system ZrO2-Al2O3, J. Mater. Sci. Lett. 12, 1368–1370.CrossRefGoogle Scholar
  43. 43.
    Jeong, Y.K. and Niihara, K. (1997) Microstructure and mechanical properties of pressureless sintered Al2O3/SiC nanocomposites, Nanostruct. Mater. 9, 193–196.CrossRefGoogle Scholar
  44. 44.
    Bamba, N., Choa, Y.H., and Niihara, K. (1997) Fabrication and mechanical properties of nanosized SiC particulate reinforced yttria stabilized zirconia composites, Nanostruct. Mater. 9, 497–500.CrossRefGoogle Scholar
  45. 45.
    Choa, Y.H., Kawaoka, H., Sekino, T., and Niihara, K. (1997) Microstructure and mechanical properties of oxide based nanocomposites fabricated by spark plas-ma sintering, Key Eng. Mater. 132–136, 2009–2012.CrossRefGoogle Scholar
  46. 46.
    Scitti, D., Fabbriche D.D., and Bellosi, A. (1997) Fabrication and characteristics of Al2O3/SiC nanocomposites, Key Eng. Mater. 132–136, 2001–2004.CrossRefGoogle Scholar
  47. 47.
    Li, G., Jiang, A., and Zhang L. (1996) Mechanical and fracture properties of nano- Al2O3 alumina, J. Mater. Sci. Lett. 15, 1713–1715.CrossRefGoogle Scholar
  48. 48.
    Andrievski, R.A., Kalinnikov, G.V., and Urbanovich, V.S. (1997) Consolidation and evolution of physical-mechanical properties of nanocomposite materials based on high-melting compounds, in S. Komarneni, J.C. Parker, and H.J. Wollenberger (eds.), Nanophase and Nanocomposite Materials II, vol. 457, Materials Research Society, Pittsburgh.Google Scholar
  49. 49.
    Andrievski, R.A., Urbanovich, V.S., and Shipilo, V.B. (in press) Fracture toughness of nitride/boride nanocomposites obtained by high-pressure sintering, Powder Metallurgy (Kiev) (in Russian).Google Scholar
  50. 50.
    Andrievski, R.A., Ivannikov, V.T., and Urbanovich, V.S. (1994) Creep studies in Si3N4-TiB2 materials, Key Eng. Mater. 89–91, 445–448.Google Scholar
  51. 51.
    Wakai, F., Kondo, N., Ogawa, H., Nagano, T., and Tsurekawa (1996) Ceramics superplasticity: deformation mechanisms and microstructures, Mater. Character. 37, 331–341.CrossRefGoogle Scholar
  52. 52.
    Burger, P., Duclos, R., and Crampon, J. (1997) Superplastic behaviour of low-doped silicon nitride, Mater. Sci. Eng. A222, 175–181.Google Scholar
  53. 53.
    Kalia, R.K., Nakano, A., Tsurita, K., Vashishta, P. (in press) Morphology of po-res and interfaces and mechanical behaviour of nanocluster-assembled silicon nitride ceramic, Phys. Rev. Lett.Google Scholar
  54. 54.
    Andrievski, R.A. (1995) Silicon nitride: synthesis and properties, Russ. Chem. Rev. 64, 291–308.CrossRefGoogle Scholar
  55. 55.
    Wang, T., Zhang, L., and Mo, C. (1994) A study on growth and crystallisation behaviour of nanostructured amorphous Si3N4, Nanostruct. Mater. 4, 207–213.CrossRefGoogle Scholar
  56. 56.
    Li, Y.-L., Liang Y., and Hu, Z.-Q. (1994) Crystallisation and phase development of nanometric amorphous Si-N-C powders, Nanostruct. Mater. 4, 857–864.CrossRefGoogle Scholar
  57. 57.
    Zhang, L., Mo, C., Wang, T., Cai, S., and Xie, C. (1993) Structure and bond properties of compacted and heat-treated silicon nitride particles, Phys. Stat. Sol. 136, 291–300.CrossRefGoogle Scholar
  58. 58.
    Wang, T., Zhang, L., Mo., C., Hu, J., and Xie, C. (1993) A study of defects in nanostructured amorphous silicon nitride, Phys. Stat. Sol. 139, 303–307.Google Scholar
  59. 59.
    Wang, T., Zhang, L., and Mou, J. (1993) Anomalous dielectric behaviour in nanometer-sized amorphous silicon nitride, Chin. Phys. Lett. 10, 676–679.CrossRefGoogle Scholar
  60. 60.
    Wang, T., Zhang, L., Hu, J., and Mo, J. (1993) Study of dangling bonds in nanometer-sized granulate silicon nitride by electron-spin resonance, J. Appl. Phys. 74, 6313–6316.Google Scholar
  61. 61.
    Leone,E.A., Curran,S., Kotun, M.E., Carrasquillo,G., Weeren,R., and Danforth,C. (1996) Solid-State 29Si NMR analysis of amorphous silicon nitride powder, J. Am. Ceram. Soc. 79, 513–517.CrossRefGoogle Scholar
  62. 62.
    Bendeddouche, A., Berjoan, R., Bache, E., Merle-Mejean, T., Schamm, S., Taillades, G., Pradel, A., and Hillel, R. (1997) Structural characterisation of amorphous SiCxNy chemical vapour deposited coatings, J. Appl. Phys. 81, 6147–6154.CrossRefGoogle Scholar
  63. 63.
    Andrievski, R.A., Konyaev, Yu.S., Leontiev, M.A., and Pivovarov, G.I. (1989) The influence of high pressures on structure and properties of silicon nitride, High Pressure Research 1, 329–331.CrossRefGoogle Scholar
  64. 64.
    Chaim, R. (1992) Fabrication and characterisation of nanocrystalline oxides by crystallisation of amorphous precursors, Nanostruct. Mater. 1, 479–489.CrossRefGoogle Scholar
  65. 65.
    Holleck, H. and Lahres, M. (1991) Two-phase TiC/TiB2 hard coatings, Mater. Sci. Eng. A140, 609–615.Google Scholar
  66. 66.
    Kester, D.J., Ailey, K.S., Davis, R.F., and More, K.L. (1993) Phase evolution in boron nitride thin films, J. Mater. Res. 8, 1213–1216.CrossRefGoogle Scholar
  67. 67.
    Kung, H., Jervis, T.R., Hirvonen, J-P., Mitchel, T.E., and Nastasi, M. (1996) Synthesis, structure and mechanical properties of nanostructured MoSi2Nx, Nanostructur. Mater. 7, 81–88.CrossRefGoogle Scholar
  68. 68.
    Andrievski, R.A. (1997) The synthesis and properties of interstitial phase films, Russ. Chem. Rev. 66, 53–72.CrossRefGoogle Scholar
  69. 68.
    Andrievski, R.A. (1997) The synthesis and properties of interstitial phase films, Russ. Chem. Rev. 66, 53–72.CrossRefGoogle Scholar
  70. 70.
    Kim, L.S., Chang, H., and Averback, R.S. (1993) Nanophase processing of amorphous alloys, J. Alloys Comp. 194, 245–249.CrossRefGoogle Scholar
  71. 71.
    Trudeau, M.L. (1995) Engineering nanocrystalline materials from amorphous precursors, Mater. Sci. Eng. A204, 233–239.Google Scholar
  72. 72.
    Lu, K. (1996) Nanocrystalline materials crystallised from amorphous solids: nanocrystallisation, structure, and properties, Mater. Sci. Eng. R 16, 161–221.CrossRefGoogle Scholar
  73. 73.
    Greer, A.L. (1998) Changes in structure and properties associated with the transition from the amorphous to the crystalline state, in G.M. Chow (ed.), Nanostructured Materials: Science and Technology, Kluwer Academic Publishers, Dordrecht.Google Scholar
  74. 74.
    Zhang, H.Y., Lu, K., and Hu, Z.Q. (1995) Transformation from the amorphous to the nanocrystalline state in a pure selenium, Nanostruct. Mater. 5, 41–50.CrossRefGoogle Scholar
  75. 75.
    Lu, K., Liu, X.D., and Yuan, F.H. (1996) Synthesis of the NiZr2 initermetallic compound nanophase materials, Physica B 217 153–159.Google Scholar
  76. 76.
    Sundgren, J. and Hultman, L. (1995) Growth, structure and properties of hard nitride based coatings and multilayers, in Y. Pauleau (ed.), Materials and Proce-sses and Interface Engineering, Kluwer Academic Publishers, Dordrecht, pp. 453–474.CrossRefGoogle Scholar
  77. 77.
    Hocking, M.G., Vasantasree, V.S., and Sidky, P.S. (1989) Metallic and Ceramic Coatings: Production, High-Temperature Properties and Applications, Longman, Harlow.Google Scholar
  78. 78.
    Konuma, M. (1992) Film Deposition by Plasma Techniques,Springer Verlag. Berlin.CrossRefGoogle Scholar
  79. 79.
    Andrievski, R.A., Kalinnikov, G.V., Kobelev, N.P., Soifer, Ya.M., and Shtansky. D.V. (in press) Structure and physical-mechanical properties of nanostructured boride/nitride films, Phys. Solid State (in Russian).Google Scholar
  80. 80.
    Sue, J.A. (1993) Development of arc evaporation of non-stoichiometric titanium nitride coatings, Surf Coat. Technol. 61, 115–120.CrossRefGoogle Scholar
  81. 81.
    Bendavid, A., Martin, P.J., Netterfield, R.P., and Kinder, T.J. (1994) The properties of TiN films deposited by filtered arc evaporation, Surf Coat. Technol. 70, 97–104.CrossRefGoogle Scholar
  82. 82.
    Barnett, S.A. (1993) Deposition and mechanical properties of superlattice thin films, in M.H. Francombe and J.L. Vossen (eds.), Physics of Thin Films. Mecha-nic and Dielectric Properties, vol. 17, Academic Press, Boston, pp. 1–77.Google Scholar
  83. 83.
    Ma, K.J. and Bloyce, A. (1995) Observations of deformation and failure mechanisms in TiN coatings after hardness indentation and scratch testing. Surf Eng. 11, 71–74.Google Scholar
  84. 84.
    Ma, K.J., Bloyce, A., and Bell, T. (1995) Examination of mechanical properties and failure mechanisms of TiN and Ti-TiN multilayer coatings, Surf Coat. Technol. 76–77, 297–302.CrossRefGoogle Scholar
  85. 85.
    Shiwa, M., Weppelmann, E., Munz, D., Swain, M.V., and Kishi, T. (1996) Acoustic emission and precision force-displacement observations of pointed and spherical indentation of silicon, J. Mater. Sci. 31, 5985–5991.CrossRefGoogle Scholar
  86. 86.
    Ma, K.J., Bloyce, A., Andrievski, R.A., and Kalinnikov, G.V. (in press) Microstructural response of mono- and multilayer hard coatings during indentation microhardness testing, Surf. Coat. Technol. Google Scholar
  87. 87.
    Andrievski, R.A., Bloyce, A., Kalinnikov, G.V., and Ma, K.J. (in press) Observations of deformation features in nanostructured T-B-N films after indentation testing, J. Mater. Sci. Lett.Google Scholar
  88. 88.
    Zielinski, P.G. and Ast, D.G. (1983) Slip bands in metallic glasses, Phil. Mag. A 48, 811–824.Google Scholar
  89. 89.
    Donovan, P.E. (1989) Plastic flow and fracture of Pd40Ni40P20 metallic glass un-der an indentor, J. Mater. Sci. 24, 523–535.CrossRefGoogle Scholar
  90. 90.
    Glezer, A.M. and Molotilov, B.V. (1992) Structure and Mechanical Properties of Amorphous Alloys, Metallurgiya, Moscow (in Russian).Google Scholar
  91. 91.
    Bobrov, O.P. and Khonik, V.A. (1995) Inhomogeneous flow via dislocations in metallic glasses: a survey of experimental evidence, J. Non-Cryst. Sol. 192/193, 603–607.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • R. A. Andrievski
    • 1
  1. 1.Institute for New Chemical ProblemsRussian Academy of SciencesChernogolovka, Moscow RegionRussia

Personalised recommendations