Advertisement

Micromechanics of Defects in Nanostructured Materials

  • Alexei E. Romanov
Part of the NATO ASI Series book series (ASHT, volume 50)

Abstract

An overview of applications of the theory of defects (dislocations, disclinations, and interfaces) to nanostructured materials is presented. The consideration is restricted by the framework of the continuum approach. First, the defect content of interfaces: grain and phase boundaries is discussed. For grain boundaries a specific nonequilibrium state is analysed. Together with defects generated at grain junctions this state is responsible for strong elastic distortions in nanograin interior. For phase boundaries the transition between coherent and incoherent, states of the interface is considered. Individual defects behaviour in nanostructured materials is investigated from a viewpoint of their interaction with different kinds of interfaces. The critical behaviour of dislocations in small particles and nanograins is considered. The role of disclinations in the formation of nanoparticles with pentagonal symmetry is analysed. The properties of dislocations in layered nanostructures are considered. In particular, for heteroepitaxial thin films two problems of technological importance are discussed: (1) prediction of mechanisms of lattice mismatch accommodation and (2) reduction of threading dislocation density.

Keywords

defects dislocations disclinations nanocrystals nanoparticles thin films interfaces grain boundaries mechanical properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dislocations in Solids, F.R.N. Nabaro Ed., vols. 1–10, North-Holland (1979–1996).Google Scholar
  2. 2.
    Physics of Defects, R. Balian, M. Kleman and J.-P. Poirier Eds. North- Holland (1981)Google Scholar
  3. 3.
    H. Gleiter, Progr. Mater. Sci., 33, 223 (1989).CrossRefGoogle Scholar
  4. 4.
    R.W. Siegel, Mater. Sci. Eng., A 166, 189 (1993).Google Scholar
  5. 5.
    V.G. Gryaznov and L.I. Trusov, Progr. Mater. Sci., 37, 289 (1993).CrossRefGoogle Scholar
  6. 6.
    Proceedings of the Second International Conference on Nanostructured Materials, H.-E. Schaefer, R. Wuerschum, H. Gleiter, and T. Tsakalakos Eds., NanoStruct. Materials, 6, N.1–4 (1995).Google Scholar
  7. 7.
    Proceedings of the Third International Conference on Nanostructured Materials, M.L. Trudeau, V. Provenzano, R.D. Shull, aND J.Y. Ying Eds., NanoStruct. Materials 9, N.1–8 (1997).Google Scholar
  8. 8.
    E.A. Fitzgerald, Mater. Sci. Reports, 7, 87 (1991).CrossRefGoogle Scholar
  9. 9.
    R. Beanland, D.J. Dunstan, P.J. Goodhew, Adv. Phys., 45, 87 (1996).CrossRefGoogle Scholar
  10. 10.
    R.W. Armstrong, Metall. Trans., 1, 1169 (1970).Google Scholar
  11. 11.
    K. Lu, W.D. Wei and J.T. Wang, Scripta Met. Mater., 24, 2319 (1990).CrossRefGoogle Scholar
  12. 12.
    V.G. Gryaznov, M.Yu. Gutkin, A.E. Romanov and L.I. Trusov, J. Mater. Sci., 28, 4359 (1993).CrossRefGoogle Scholar
  13. 13.
    A.E. Romanov, NanoStruct. Mater., 6, 125 (1995).CrossRefGoogle Scholar
  14. 14.
    Y. Sasajima, T. Arakawa, M. Ichimura and M. Imabayashi, Jap. J. Appl.Phys., 28, 1669 (1989).CrossRefGoogle Scholar
  15. 15.
    A.P. Sutton and R. Balluffi, Interfaces in Crystalline Materials, Clarendon Press, Oxford (1995).Google Scholar
  16. 16.
    J.P. Hirth J. Lothe, Theory of Dislocations, Wiley, New York (1982)Google Scholar
  17. 17.
    A.E. Romanov and V.I. Vladimirov, in Dislocations in Solids (ed. F.R.N. Nabarro), vol.9, 191, North-Holland (1992).Google Scholar
  18. 18.
    A.E. Romanov, Mater. Sci. Eng. A, 164, 58 (1993).CrossRefGoogle Scholar
  19. 19.
    J.C.M. Li, Surf. Sci., 31, 12 (1972).CrossRefGoogle Scholar
  20. 20.
    V.Y. Gertsman, A.A. Nazarov, A.E. Romanov, R.Z. Valiev, V.I. Vladimirov, Phil. Mag. A, 59, 1113 (1989).CrossRefGoogle Scholar
  21. 21.
    W. Bollmann, Phil. Mag. A, 57, 181, 637 (1988).CrossRefGoogle Scholar
  22. 22.
    V.V. Rybin, A.A. Zisman, N.Yu. Zolotarevsky, Acta Metal. Mater., 41, 2211 (1993).CrossRefGoogle Scholar
  23. 23.
    A.A. Nazarov, A.E. Romanov, R.Z. Valiev, Scripta Mater., 34 729 (1996).CrossRefGoogle Scholar
  24. 24.
    P. Müllner and W.-M. Kuschke, Scripta Mater., 36, 1451 (1997).CrossRefGoogle Scholar
  25. 25.
    A.A. Nazarov, A.E. Romanov and R.Z. Valiev, Acta Met. Mater., 41, 1033 (1993).CrossRefGoogle Scholar
  26. 26.
    R.Z. Valiev, V.I. Vladimirov, V.Yu. Gertsman, A.A. Nazarov, and A.E. Romanov, Phys. Met. Metall., 69, No3, 30 (1990).Google Scholar
  27. 27.
    O.A. Shenderova, D.W. Brenner, A.A. Nazarov, A.E. Romanov and L.H. Yang, Phys. Rev. B,(1998),in press.Google Scholar
  28. 28.
    D.W. Brenner, O.A. Shenderova, L.H. Yang, A.A. Nazarov and A.E. Romanov, in Computer Aided Design of High Temperature Materials, A. Pechenik, R. Kalia, P. Vashishta Eds., Oxford University press, (1997), in press.Google Scholar
  29. 29.
    A.A. Nazarov, A.E. Romanov and B. Baudelet, Phil. Mag. Lett., 68, 303 (1993).CrossRefGoogle Scholar
  30. 30.
    A.A. Nazarov, A.E. Romanov and R.Z. Valiev, NanoStruct. Mater., 4, 94 (1994).CrossRefGoogle Scholar
  31. 31.
    A.A. Nazarov, Scripta Mater., 37, 1155 (1997).CrossRefGoogle Scholar
  32. 32.
    J.W. Matthews, in Dislocations in Solids, Ed. F.R.N.Nabarro, Norht- Holland, 2, 459 (1979).Google Scholar
  33. 33.
    A.E. Romanov, T. Wagner and M. Rühle, Scripta Mater.(1998), in press.Google Scholar
  34. 34.
    G. Gutekunst, J. Mayer, V. Vitek, and M. Rühle, Phil. Mag. A, 75, 1357 (1997).CrossRefGoogle Scholar
  35. 35.
    M. Wagner, T. Wagner, D.L. Caroll, J. Marien, D.A. Bonell, and M. Rühle, MRS Bulletin, 22, 42 (1997).Google Scholar
  36. 36.
    V.G. Gryaznov, A.M. Kaprelov and A.E. Romanov, Scripta Met., 23, 1443 (1989).CrossRefGoogle Scholar
  37. 37.
    V.G. Gryaznov, I.A. Polonsky, A.E. Romanov, L.I. Trusov, Phys. Rev. B, 44, 42 (1991).CrossRefGoogle Scholar
  38. 38.
    I.A. Polonsky, A.E. Romanov, V.G. Gryaznov and A.M. Kaprelov, Czech. J. Phys. 41, 1248 (1991).CrossRefGoogle Scholar
  39. 39.
    N. Wang, G. Palumbo, Z. Wang, U. Erb and K.T. Aust, Scripta Metall. Mater., 28, 253 (1993).CrossRefGoogle Scholar
  40. 40.
    M. Hecker and A.E. Romanov, Phys. Stat. Sol. (a), 130, 91 (1992).CrossRefGoogle Scholar
  41. 41.
    M. Hecker and A.E. Romanov, Mater. Sci. Eng., A164, 433 (1993).Google Scholar
  42. 42.
    M.Yu. Gutkin, A.E. Romanov and E.C. Aifantis, Phys. Stat. Sol. (a), 153, 66 (1996).Google Scholar
  43. 43.
    B. Bartuschat and J. Urban, Phil. Mag. A, 76, 783 (1997).CrossRefGoogle Scholar
  44. 44.
    R. de Wit, J. Phys. C, 5, 529 (1972).CrossRefGoogle Scholar
  45. 45.
    I.A. Polonski, A.E. Romanov and V.G. Gryaznov, Phil. Mag. A, 64, 281 (1991).CrossRefGoogle Scholar
  46. 46.
    V.G. Gryaznov, A.M. Kaprelov, A.E. Romanov and I.A. Polonsky, Phys. Status Solidi (b), 167, 441 (1991).Google Scholar
  47. 47.
    A.E. Romanov, I.A. Polonsky, V.G. Gryaznov, S.A. Nepijko, T. Junghaus and N.I. Vitrykhovski, J. Cryst. Growth 129, 691 (1993).CrossRefGoogle Scholar
  48. 48.
    H. Gao, J. Mech. Phys. Solids, 39, 443 (1991).CrossRefGoogle Scholar
  49. 49.
    J.S. Speck, A.C. Daykin, A. Seifert, A.E. Romanov and W. Pompe, J. Appl. Phys., 78, 1696 (1995).CrossRefGoogle Scholar
  50. 50.
    A.E. Romanov, W. Pompe and J.S. Speck, J. Appl. Phys., 79, 4037 (1996).CrossRefGoogle Scholar
  51. 51.
    M. Ohring, Material Science of Thin Films, Academic Press, New York (1992).Google Scholar
  52. 52.
    V.I. Vladimirov, M.Yu. Gutkin and A.E. Romanov, Poverkhnost’ (Surface), 6, 46 (1988).Google Scholar
  53. 53.
    M.Yu. Gutkin, A.L. Kolesnikova, A.E. Romanov, Mater. Sci. Eng. A, 164, 433 (1993).CrossRefGoogle Scholar
  54. 54.
    L.B. Freund, MRS Bulletin, 17, 52 (1992).Google Scholar
  55. 55.
    J.Y. Tsao, Materials Fundamentals of Molecular Beam Epitaxy, Academic Press, New York (1993).Google Scholar
  56. 56.
    M.Yu. Gutkin, M. Militzer, A.E. Romanov and V.I. Vladimirov, Phys. Stat. Sol.(a), 113, 337 (1989).CrossRefGoogle Scholar
  57. 57.
    V.I. Vladimirov, M.Yu. Gutkin and A.E. Romanov, Sov. Phys. Sol. State, 29, 1581 (1987).Google Scholar
  58. 58.
    M.Yu. Gutkin and A.E. Romanov, Phys. Stat. Sol. (a), 144, 39 (1994).CrossRefGoogle Scholar
  59. 59.
    M.Yu. Gutkin and A.E. Romanov, Phys. Stat. Sol. (a), 129, 117 (1992).CrossRefGoogle Scholar
  60. 60.
    M.Yu. Gutkin and A.E. Romanov, Soy. Phys. Sol. State, 32, 751 (1990).Google Scholar
  61. 61.
    A. Atkinson, S.C. Jain, J. Appl. Phys., 72, 2342 (1992).CrossRefGoogle Scholar
  62. 62.
    A.E. Romanov, E.C. Aifantis, Scripta Met. Mater., 30, 1581 (1994).CrossRefGoogle Scholar
  63. 63.
    M.Yu. Gutkin, A.E. Romanov and E.C. Aifantis, Phys. Stat. Sol. (a), 151, 281 (1995).CrossRefGoogle Scholar
  64. 64.
    S.V. Kamat and J.P. Hirth, J. Appl. Phys., 67, 6844 (1990).CrossRefGoogle Scholar
  65. 65.
    M.Yu. Gutkin and A.E. Romanov, Sov. Phys. Sol. State, 33, 874 (1991).Google Scholar
  66. 66.
    X. Feng and J.P. Hirth, J. Appl. Phys., 72, 1386 (1992).CrossRefGoogle Scholar
  67. 67.
    M.Yu. Gutkin and A.E. Romanov, Phys. Status Solidi (a), 125, 107 (1991).CrossRefGoogle Scholar
  68. 68.
    M.Yu. Gutkin and A.E. Romanov, Phys. Status Solidi (a), 129, 363 (1992).CrossRefGoogle Scholar
  69. 69.
    L.B. Freund and W.D. Nix, Appl. Phys. Lett., 69, 173 (1996).CrossRefGoogle Scholar
  70. 70.
    G. Beltz and L.B. Freund, Phys. Stat. Sol. (b), 180, 303 (1993).CrossRefGoogle Scholar
  71. 71.
    J.S. Speck, M.A. Brewer, G. Beltz, A.E. Romanov and W. Pompe, J. Appl. Phys., 80, 3808 (1996).CrossRefGoogle Scholar
  72. 72.
    A.E. Romanov, W. Pompe, G.E. Beltz and J.S. Speck, Appl.Phys. Lett., 69, 3342 (1996).CrossRefGoogle Scholar
  73. 73.
    A.E. Romanov, W. Pompe, G.E. Beltz and J.S. Speck, Phys. Stat. Sol. (b), 198, 599 (1996).CrossRefGoogle Scholar
  74. 74.
    G.E. Beltz, M. Chang, M.A. Eardley, W. Pompe, A.E. Romanov and J.S. Speck, Mater. Sci. Eng. A, 234–236, 794 (1997).Google Scholar
  75. 75.
    A.E. Romanov, W. Pompe, G.E. Beltz, and J.S. Speck, Phys. Stat. Sol. (b), 199, 33 (1997).CrossRefGoogle Scholar
  76. 76.
    G.E. Beltz, M. Chang, J.S. Speck, W. Pompe and A.E. Romanov, Phil. Mag. A, 76 807 (1997).CrossRefGoogle Scholar
  77. 77.
    M.Yu. Martisov and A.E. Romanov, Sov. Phys. Sol. State, 32, 1101 (1990).Google Scholar
  78. 78.
    M.Yu. Martisov and A.E. Romanov, Sov. Phys. Sol. State, 33, 1173 (1991).Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • Alexei E. Romanov
    • 1
    • 2
  1. 1.Max-Planck-Institut für MatallforschungStuttgartGermany
  2. 2.A.F.Ioffe Physico-Technical InstituteRussian Academy of SciencesSt.PetersburgRussia

Personalised recommendations