Quasiperiodic and Disordered Interfaces in Nanostructured Materials

  • I. A. Ovid’ko
Part of the NATO ASI Series book series (ASHT, volume 50)


This lecture is concerned with quasiperiodic and disordered interfaces in nanostructured materials. The notion of quasiperiodic interfaces is rather new in both solid state physics and materials science. In particular, it is not widespread among experts in the area of nanostructured materials. Therefore, the most attention in this lecture will be paid to the structure and properties of quasiperiodic interfaces as well as to their contribution to macroscopic properties of nanostructured materials. In doing so, for brevity, we will concentrate our theoretical consideration on final results, while intermediate mathematical details will be only outlined.


Burger Vector Nanostructured Material Nanocrystalline Material Misfit Dislocation Boundary Dislocation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lubensky, T.C. (1988) Symmetry, elasticity and hydrodynamics in quasiperiodic structures, in M.V. Jaric (ed.), Introduction to Quasicrystals, Academic Press, Boston., pp. 199–280.CrossRefGoogle Scholar
  2. 2.
    Janssen, T. (1988) Aperiodic crystals: a contradiction in terms? Phys.Rep. 168, 55–113.CrossRefGoogle Scholar
  3. 3.
    Ovid’ko, I.A. (1991), Defects in Condensed Media: Glasses, Crystals, Quasicrystals, Liquid Crystals, Magnetics, Superfluids, Znanie, St.Petersburg (in Russian).Google Scholar
  4. 4.
    Jain, S.C., Willis, J.R., and Bullough, R. (1990) A review of theoretical and experimental work on the structure of GeSi structured layers and superlattices, with extensive bibliography, Adv.Phys. 39, 127–90.CrossRefGoogle Scholar
  5. 5.
    Ievlev, V.M., Trusov, L.I., and Kholmyanskii, V.A. (1988) Structural Transformations in Thin Films. Metallurgiya, Moscow (in Russian).Google Scholar
  6. 6.
    Jesser, W.A., and Kui, J. (1993) Misfit dislocation generation mechanisms in heterostructures, Mater.Sci.Eng.A 163, 101–10.Google Scholar
  7. 7.
    Van der Merwe, J.H. (1991) Strain relaxation in epitaxial interfaces, J.Electron. Mater. 20, 793–803.CrossRefGoogle Scholar
  8. 8.
    Kukushkin, S.A., and Osipov, A.V. (1995) Soliton model of island migration in thin films, Surf.Sci. 329, 135–40.CrossRefGoogle Scholar
  9. 9.
    Rubets, V.P., and Kukushkin, S.A. (1992) Determination of migration mechanism and the influence of structure of films, Thin Solid Films 221, 267–70.CrossRefGoogle Scholar
  10. 10.
    Trusov, L.I., and Kholmyanskii, V.A. (1973) Island Metallic Films, Metallurgiya, Moscow (in Russian).Google Scholar
  11. 11.
    Sutton, A.P., and Vitek, V. (1983) On the structure of tilt grain boundaries in cubic metals, Phil. Trans.Roy.Soc.London A 309, 1–68.CrossRefGoogle Scholar
  12. 12.
    Nazarov, A.A., and Romanov A.E. (1989) On the average misorientation of general tilt boundaries, Phil.Mag.Lett. 60, 187–93.CrossRefGoogle Scholar
  13. 13.
    Sutton, A.P. (1988) Irrational tilt grain boundaries as one-dimensional quasicrystals, Acta Metall. 36, 1291–9.CrossRefGoogle Scholar
  14. 14.
    Rivier, N., and Lawrence, A.J.A. (1988) Quasicrystals at grain boundaries, Physica B 150, 190–202.CrossRefGoogle Scholar
  15. 15.
    Mikaelyan, K.N., Ovid’ko, I.A., and Romanov, A.E. (1997) Geometric and energetic characteristics of quasiperiodic grain boundaries in crystals, in V.I. Betekhtin (ed.), Modern Problems of Physics and Mechanics of Materials, St.Petersburg State University, St.Petersburg, pp. 186–93 (in Russian).Google Scholar
  16. 16.
    Mikaelyan, K.N., Ovid’ko, I.A., and Romanov, A.E. Energetic and stress-field characteristics of quasiperiodic tilt boundaries in polycrystalline and nanocrystalline materials, submitted to Mater.Sci.Eng.A. Google Scholar
  17. 17.
    Gratias, D. and Thalal, A. (1988) Hidden symmetries in general grain boundaries, Phil.Mag.Lett. 57, 63–8.CrossRefGoogle Scholar
  18. 18.
    Ovid’ko, I.A. (1997) Quasinanocrystalline materials, Nanostruct.Mater. 8, 149–53.CrossRefGoogle Scholar
  19. 19.
    Ovid’ko, I.A. (1997) Quasiperiodic grain boundaries and intergrain sliding in crystalline and quasinanocrystalline solids, Phys.Sol.State 39, 268–73.CrossRefGoogle Scholar
  20. 20.
    Ovid’ko, I.A. (1994) New micromechanism for strengthening in polycrystalline solids, Mater.Sci.Eng.A 188, 37–41.CrossRefGoogle Scholar
  21. 21.
    Ovid’ko, I.A. (1995) Dislocations and quasiperiodic structures, Phys.Stat. Sol. (a) 149, 389–94.CrossRefGoogle Scholar
  22. 22.
    Romanov, A.E. (1995) Continuum theory of defects in nanoscaled materials, Nanostruct.Mater. 6, 125–34.CrossRefGoogle Scholar
  23. 23.
    Gryaznov, V.G. and Trusov, L.I. (1993) Size effects in micromechanics of nanocrystals, Progr. Mater. Sci. 37, 239–401.CrossRefGoogle Scholar
  24. 24.
    Hahn, H., and Padmanabhan, K.A. (1995) Mechanical response of nano-structured materials, Nanostruct.Mater 6, 191–200.CrossRefGoogle Scholar
  25. 25.
    Siegel, R.W., and Fougere, G.E. (1995) Mechanical properties of nanophase materials, Nanostruct.Mater. 6, 205–16.CrossRefGoogle Scholar
  26. 26.
    Vladimirov, V.I. (1975) Einführung in die Physikalishe Theorie der Plastizität und Festigkeit, VEB Deutscher Verlag für Grundstoffindustrie, Leipzig.Google Scholar
  27. 27.
    Kaibyshev, O.A., and Valiev, R.Z. (1986) Grain Boundaries and Properties of Metals, Metallurgiya, Moscow (in Russian).Google Scholar
  28. 28.
    Gryaznov, V.G., Gutkin, M.Yu., Romanov, A.E., and Trusov, L.I. (1993) On the yield stress of nanocrystals, J.Mater.Sci. 28, 4359–65.CrossRefGoogle Scholar
  29. 29.
    Armstrong, R.W., Gold, I., Douthwait, R.M., and Petch, N.I. (1962) The plastic deformation of polycrystalline aggregates, Phil.Mag. 7, 45–58.CrossRefGoogle Scholar
  30. 30.
    Schaeffer, R.J., and Bendersky, L.A. (1988) Metallurgy of quasicrystals, in M.V. Jaric (ed.), Introduction to Quasicrystals, Academic Press, Boston etc., pp. 111–42.CrossRefGoogle Scholar
  31. 31.
    Inoue, A. (1995) Preparation and novel properties of nanocrystalline and nanoquasicrystalline alloys, Nanostruct.Mater. 6, 53–64.CrossRefGoogle Scholar
  32. 32.
    Ovid’ko, I.A. (1994) Structural geometry of grain boundaries in icosahedral quasicrystals, Zeit.Phys.B 95, 321–6.CrossRefGoogle Scholar
  33. 33.
    Romanov, A.E., (1997) Micromechanics of defects in nanostructured materiah, paper in this volume.Google Scholar
  34. 34.
    Jing, J., Krämer, A., Birringer, R., Gleiter, H., and Gonser, U. (1989) Modified atomic structure in a Pd - Fe - Si nanoglasses: a Mossbauer study, J. Non-Cryst. Solids 113, 167–70.CrossRefGoogle Scholar
  35. 35.
    Gleiter, H. (1991) Nanocrystalline solids, J. Appl. Crysi. 24, 79–90.CrossRefGoogle Scholar
  36. 36.
    Wurschum, R., Rollinger, M., Kisker, H., Raichle, A., Damson B., and Schaefer H.-E. (1995) Synthesis of nanoamorphous alloys by particle condensation and compaction, Nanostruct. Mater. 6, 377–80.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • I. A. Ovid’ko
    • 1
  1. 1.Institute of Machine Science ProblemsRussian Academy of SciencesSt.PetersburgRussia

Personalised recommendations