Skip to main content

Nanoparticle Synthesis: A Key Process in the Future of Nanotechnology

  • Chapter
Nanostructured Materials

Part of the book series: NATO ASI Series ((ASHT,volume 50))

Abstract

The unusual properties of nanoscale particles have sparked commercial interest in diverse fields including magnetics, pharmaceutics, aerospace and microelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bolton, F. and Rossler, U. (1993) Classical model of a Wigner Crystal in a Quantum Dot Superlattices and Microstructures 13, 139–144

    Google Scholar 

  2. Fafard, S. (1997), Quantum Dots, Photonics Spectra, May, pp. 160–163.

    Google Scholar 

  3. Turton, R. (1995),The quantum dot: a Journey into the future of microelectronics, R., John Publisher, NY.

    Google Scholar 

  4. Granqvist, C.G. and Buhrman, R.A. (1976), Ultrafine metal particles, J. Applied Physics 47, p. 2200.

    Article  CAS  Google Scholar 

  5. Fuchs, N. A. and Sutugin, A.G. (1971)Formation and Methods of Generation of Highly Dispersed Aerosols, G. M. Hidy and J. R. Brock,Eds., International Reviews of Aerosol Physics and Chemistry, Pergamon Press, Oxford, vol.2, pp10–12.

    Google Scholar 

  6. Green, H. L. and Lane, W. R. (1964) Particulate Clouds: Dusts, Smokes and Mists, E.. & F.N. Spon Ltd., London, pp.18–21.

    Google Scholar 

  7. Fuchs, N. A. and Sutugin, A. G., (1966), Generation and Use of Monodisperse Aerosols,in C. N. Dasvies, ed., Aerosol Science, Academic Press, London, pp. 1–27.

    Google Scholar 

  8. Holzapfel „ B., Roas, B., Schultz, L. Bauer, P. and Saemann-Ischenko, G. (1992), Off-axis deposition of YBa2Cu3O7-δ thin films Appl. Phys. Lett. 61 3178–3180.

    Article  CAS  Google Scholar 

  9. B. Holzapfel, B. Roas, L. Schultz, L. Bauer, and G. Saemann-Ischenko, G. (1992). Off-axis deposition of YBa2Cu3O7-δ thin films Appl. Phys. Lett. 61 3178–3180.

    Article  CAS  Google Scholar 

  10. M. Becker„ J. Keto, and J. Brock, J.C. Juang„ and H. Cai, (1994). Synthesis of nanometer glass particles by pulsed-laser ablation of microparticles, Appl. Phys. Lett. 65, 40.

    Article  Google Scholar 

  11. Material given in Sect.3 is result of collaborative efforts, at Univ. of Texas/Austin, between J. Brock (CH.E.), J. Keto (Physics), M. Becker (E.C.E.), and graduate students under grant ECS9119043, National Science Foundation.

    Google Scholar 

  12. Y. P. Raizer (1977). Laser Induced Discharge Phenomena, PlenumPub., NY.

    Google Scholar 

  13. J. Carls, and J. Brock, (1987), Explosion of a water droplet by pulsed laser heating, Aerosol Sci. Tech 7, 79–90

    Article  CAS  Google Scholar 

  14. J. Carls and J. Brock, (1988)Propagation of laser breakdown and detonation waves in transparent droplets, Optics Letters 13 273.

    Article  CAS  Google Scholar 

  15. J. Carls, J. Brock,, and Y. Seo, (1991). Laser-induced breakout and detonation waves in droplets: II. Model, J. Optical Soc. America B, 8, 329–336.

    Article  CAS  Google Scholar 

  16. Lee, J., Becker, M., Brock, J., Keto, J., and Walser, R. (1998). Permalloy nanoparticles generated by laser ablation, IEEE Trans. Magn, 32, 4484–4486.

    Google Scholar 

  17. N. Chaudhary, (1996). Investigation of pulsed laser ablation of microparticles in nanoparticle synthesis, Ph. D. Dissertation, Univ. of Texas/Austin, pp. 149–190.

    Google Scholar 

  18. W. F. Hsieh, J. B. Zheng, C. F. Wood, B. T. Chu and R. K. Chang ((1987). Propagation velocity of laser-induced plasma inside and outside a transparent drop, Opt. Letters 12, 576.

    Article  CAS  Google Scholar 

  19. G. A. Lyzenga, T. J. Ahrens, W. J. Nellis, and A.C. Mitchell, (1982), The temperature of shock-compressed water,. J. Chem. Phys. 76, 6282

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Brock, J.R. (1998). Nanoparticle Synthesis: A Key Process in the Future of Nanotechnology. In: Chow, GM., Noskova, N.I. (eds) Nanostructured Materials. NATO ASI Series, vol 50. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5002-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5002-6_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6100-1

  • Online ISBN: 978-94-011-5002-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics