Skip to main content

Diagnosis, Differential Diagnosis, and Follow-Up of Tumours by Means of FDG PET

  • Chapter
Positron Emission Tomography: A Critical Assessment of Recent Trends

Part of the book series: NATO ASI Series ((ASHT,volume 51))

  • 153 Accesses

Abstract

Ninety-two 18fluoro-deoxy-D-glucose (FDG) PET examinations performed on oncological patients yielded conclusive results for primary diagnostics, staging, restaging and therapeutic monitoring in 39%, 85%, 82% and 93% of the cases, respectively. The 77% overall incidence of conclusive results indicates that the FDG PET technique is a powerful clinical tool. It should be emphasized that this result was attained through careful histopathological investigations, high-resolution anatomic imaging procedures and an active follow-up policy. Additional information was obtained concerning the proliferative capacity of the tumour cells and the extent of the viable tumorous tissue. The metabolically-based determination of the tumour margins by PET and CT-MRI-PET image fusion helped in delineation of the gross tumour volume and its subclinical extent for three-dimensional (3D) radiotherapy planning ensuring a more adequate dose coverage. The value of FDG PET investigations in oncology may be summarized as follows: limited in the primary diagnostics, strong in staging and restaging, very strong in therapeutic monitoring, and investigational in estimations of the proliferative capacity of tumorous tissue and 3D radiation treatment planning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, L.P., Crowe, J.P., Al-Kaisi, N.K. and Sunshine, J. (1993) Evaluation of breast masses and axillary lymph nodes with [F-18] 2-deoxy-2-fluoro-D-glucose PET, Radiology 187,743–750.

    PubMed  CAS  Google Scholar 

  2. Ágoston, P., Ésik, O., Gulyás, B., Boros, I., Forrai, G. and Trón, L. (1996) Whole-body PET in the search for unknown primary tumours and restaging of cancer patients after treatment, Radiother. Oncol . 40, Suppl (1) S141.

    Article  Google Scholar 

  3. Bendl, R., Pross, J., Hoess, A, Keller, MA, Preiser, K. and Schlegel, W. (1994) VIRTUOS - A program for VIRTUal RadiOtherapy Simulation and verification, in A.R. Hounsell, J.M. Wilkinson and P.C. Williams (eds.), Proceedings of the 11th International Conference on the Use of Computers in Radiation Therapy, Manchester, pp. 226–227.

    Google Scholar 

  4. Crowe, J.P. Jr., Adler, L.P., Shenk, R.R. and Sunshine, J. (1994) Positron emission tomography and breast masses: comparison with clinical, mammographic, and pathological findings, Ann. Surg. Oncol. 1, 132–140.

    Article  PubMed  Google Scholar 

  5. Dobbs, H.J., Parker, R.P., Hodson, N.J., Hobday, P. and Husband, J.E. (1983) The use of CT in radiotherapy treatment planning, Radiother. Oncol. 1,133–142.

    Article  PubMed  CAS  Google Scholar 

  6. Emri, M., Márián, T., Kövér, G., Berényi, E. and Ésik, O. (1996) Registration: a powerful tool to combine information by different imaging modalities, in B. Gulyas and H.W. Müller-Gärtner (eds.), Positron emission tomography: a critical assessment of recent trends, Kluwer Academic Publishers, Dordrecht, this volume.

    Google Scholar 

  7. Engel, H., Steinert, H., Buck, A., Berthold, T., Huch Boni, R.A. and von Schulthess, K. (1996) Whole-body PET: physiological and artifactual fluorodeoxyglucose accumutations, J. Nucl. Med. 37,441–446.

    PubMed  CAS  Google Scholar 

  8. Ésik, O., Márián, T., Gulyás, B., Tóth, E., Lövey, J. and Trón, L. (1996) FDG PET investigation in medullary thyroid cancer, in A.M.J. Pawns, J. Pruim, E.J.F. Franssen and W. Vaalburg (eds.), Proceedings of the European Conference on Research and Application ofPositron Emission Tomography in Oncology, Groningen, p. 137.

    Google Scholar 

  9. Gupta, N.C., Maloof, M. and Gunel, E. (1996) Probability of malignancy in solitary pulmonary nodules using flourine-18-FDG and PET, J. Nucl. Med. 37,943–948.

    PubMed  CAS  Google Scholar 

  10. Haberkorn, U., Strauss, L.G., Reisser, C., Haag, D., Dimitrakopoulou, A., Ziegler, S., Oberdorfer, F., Rudat, V. and van Kaick, G. (1991) Glucose uptake, perfusion, and cell proliferation in head and neck tumors: relation of positron emission tomography to flow cytometry, J. Nucl. Med. 32, 1548–1555.

    PubMed  CAS  Google Scholar 

  11. Hoh, C.K., Hawkins, R.A., Glaspy, J.A., Dahlbom, M., Tse, N.Y., Hoffman, E.J., Schiepers, C., Choi, Y., Rege, S., Nitzsche, E., Maddahi, J. and Phelps, M.E. (1993) Cancer detection with whole-body PET using 2[18F]fluoro-2-deoxy-D-glucose, J. Comput. Assist. Tomogr. 17, 582–589.

    Article  PubMed  CAS  Google Scholar 

  12. Kole, A.C., Nieweg, O.E., Vermey, A, Braams, J.W., Pruim, J., Hoekstra, H.J., Roodenburg, J.L.N., Schraffordt Koops, H. and Vaalburg W. (1996) Detection of unknown primary tumors using whole body PET with 18FDG, in A.M.J. Paans, J. Pruim, E.J.F. Franssen and W. Vaalburg (eds.), Proceedings of the European Conference on Research and Application of Positron Emission Tomography in Oncology, Groningen, p. 135–136.

    Google Scholar 

  13. Leskinen-Kallio, S., Năgren, K., Lehikoinen, P., Routsalainen, U. and Joensuu H. (1991) Uptake of 11Cmethionine in breast cancer studied by PET. An association with the size of S-phase fraction, Br. J. Cancer 64, 1121–1124.

    Article  PubMed  CAS  Google Scholar 

  14. Levin, D.N., Pelizzari, C.A., Chen, G.T.Y., Chen, C.-T. and Cooper, M.D. (1988) Retrospective geometric correlation of MR, CT, and PET images, Radiology 169, 817–823.

    PubMed  CAS  Google Scholar 

  15. Lövey, J., Ésik, O., Gulyás, B., Tóth, E., Molnár, T. and Trón, L. (1996) FDG PET for the evaluation of metastatic lymph nodes, in B. Gutyâs and H.W. Müller-GArtner (eds.), Positron emission tomography: a critical assessment of recent trends, Kluwer Academic Publishers, Dordrecht, this volume.

    Google Scholar 

  16. Lynch, H.T., Smyrk, T.C., Watson, P., Lanspa, S.J., Lynch, J.F., Lynch, P.M., Cavalieri, R.J. and Boland, C.R. (1993) Genetics, natural history, tumor spectrum, and pathology of hereditary nonpolyposis colorectal cancer: an updated review, Gastroenterology 104, 1535–1549.

    PubMed  CAS  Google Scholar 

  17. March, D.E., Wechsler, R.J., Kurtz, AB., Rosenberg, AL. and Needleman, L. (1991) CT-pathologic correlation of axillary lymph nodes in breast carcinoma, J. Comput. Assist. Tomogr. 15, 440–444.

    Article  PubMed  CAS  Google Scholar 

  18. Minn, H., Joensuu, H., Ahonen, A., Klemi, P. (1988) Fluorodeoxyglucose imaging: a method to assess the proliferative activity of human cancer in vivo. Comparison with DNA flow cytometry in head and neck tumors, Cancer 61, 1776–1781.

    Article  PubMed  CAS  Google Scholar 

  19. Miyazawa, H., Arai, T., Iio, M. and Hara, T. (1993) PET imaging of non-smal-cell lung carcinoma with carbon-11-methionine: relationship between radioactivity uptake and flow-cytometric parameters, J. Nucl. Med. 34,1886–1891.

    PubMed  CAS  Google Scholar 

  20. Nieweg, O.E., Kim, E.E., Wong, W.-H., Brousssard, W.F., Singletary, S.E., Hortobagyi, G.N. and Tilbury, R.S. (1993) Positron emission tomography with fluorine-18-deoxyglucose in the detection and staging of breast cancer, Cancer 71, 3920–3925.

    Article  PubMed  CAS  Google Scholar 

  21. Nolop, K.B., Rhodes, C.G., Brudin, L.H., Beaney, R.P., Krauss, T., Jones, T. and Hughes, J.M.B. (1987) Glucose utilization in vivo by human pulmonary neoplasms, Cancer 60, 2682–2689.

    Article  PubMed  CAS  Google Scholar 

  22. Pelizzari, CA., Chen, G.T.Y., Halpern, H., Chen, C.-T. and Cooper, M.D. (1987) Three-dimensional correlation of PET, CT and MRI images, J. Nucl. Med. 28, 682.

    Google Scholar 

  23. Pross, J., Bendl, R. and Schlegel, W. (1994) TOMAS, a TOol for MAnual Segmentation based on multiple image data sets, in A.R. Hounsell, J.M. Wilkinson and P.C. Williams (eds.), Proceedings of the 11th International Conference on the Use of Computers in Radiation Therapy, Manchester, pp.192–193.

    Google Scholar 

  24. Reisser, C., Haberkom, U. and Strauss, L.G. (1993) The relevance of positron emission tomography for the diagnosis and treatment of head and neck tumors, J. Otolaryngol. (Canada) 22, 231–238.

    CAS  Google Scholar 

  25. Shad, L.R., Boesecke, R., Schlegel, W., Hartmann, G.H., Sturm, V., Strauss, L.G. and Lorenz, W.J. (1987) Three dimensional image correlation of CT, MR, and PET studies in radiotherapy treatment planning of brain tumors, J. Comput. Assist. Tomogr. 11, 948–954.

    Article  Google Scholar 

  26. Shuman, W.P., Griffin, B.R, Haynor, D.R., Johnson, J.S., Jones, D.C., Cromwell, L.D. and Moss, A.A. (1985) MRI imaging in radiation therapy planning, Radiology 156,143–147.

    PubMed  CAS  Google Scholar 

  27. Szakáll, S. Jr., Trón, L., Gulyás, B. and Ésik, O. (1996) FDG-PET in the follow-up of patients with differentiated thyroid cancer, Radiother. Oncol. 40, Suppl (1) S 140.

    Article  Google Scholar 

  28. Székely, J., Poller, I., Gulyás, B., Balkay, L., Trón, L. and Ésik, O. (1996) PET in the follow-up of CNS tumours after radiotherapy, Radiother. Oncol. 40, Suppl (1) S 140.

    Article  Google Scholar 

  29. Szentirmay, Z., Tusnády, G. and Tóth, E. (1997) A daganatok kóros DNS tartalma [Cellular DNA content of human tumours, in Hungarian], Orvosi Hetilap 138, 000–000.

    Google Scholar 

  30. Tse, N.Y., Hoh, C.K., Hawkins, R.A., Zinner, M.J., Dahlbom, M., Choi, Y., Maddahi, J., Brunicardi C., Phelps M.E. and Glaspy, J.A. (1992) The application of positron emission tomographic imaging with fluorodeoxyglucose to the evaluation of breast disease, Ann. Surg. 216, 27–34.

    Article  PubMed  CAS  Google Scholar 

  31. Wahl, R.L., Cody, R.L., Hutchins, G.D. and Mudgett, E.E. (1991) Primary and metastatic breast carcinoma: initial clinical evaluation with PET and the radiolabeled glucose analog 2-[F-18]-fluoro-2-deoxy-D-glucose, Radiology 179, 765–770.

    PubMed  CAS  Google Scholar 

  32. Wahl, R.L., Quint, L.E., Cieslak, R.D., Aisen, A.M., Koeppe, R.A. and Meyer, C.R. (1993) “Anatometabolic” tumor imaging fusion of FDG PET with CT or MRI to localize foci of increased activity, J. Nucl. Med. 34, 1190–1197.

    PubMed  CAS  Google Scholar 

  33. Woods, R.P., Mazziotta, J.C. and Cherry, S.R. (1993) MRI-PET registration with automated algorithm, J. Comput. Assist. Tomogr. 17, 536–546.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ésik, O., Gulyás, B., Trón, L. (1998). Diagnosis, Differential Diagnosis, and Follow-Up of Tumours by Means of FDG PET. In: Gulyás, B., Müller-Gärtner, H.W. (eds) Positron Emission Tomography: A Critical Assessment of Recent Trends. NATO ASI Series, vol 51. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4996-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4996-9_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6097-4

  • Online ISBN: 978-94-011-4996-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics