Skip to main content

Labelled Cells for Imaging Infection

  • Chapter
The Imaging of Infection and Inflammation

Part of the book series: Developments in Nuclear Medicine ((DNUM,volume 31))

Abstract

The clinical use of radiolabelled leucocytes has been one of the great success stories of nuclear medicine during the past fifteen years. Early work in the USA by Thakur [1] showed that indium-111 oxine could be successfully tagged to white cells and that the technique could be used to determine the sites of infection with high sensitivity and specificity. Later work in the UK [2] confirmed that technetium could also be used as a white cell label provided that is was used in conjunction with the lipophilic chelate hexamethyl propylene amine oxime (HMPAO). Since those early years labelled leucocytes have largely replaced gallium-67 citrate as the method of choice for location of infection and inflammation and the techniques have become widely used throughout the nuclear medicine community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Thakur ML. Indium-111 labelled leucocytes for the localisation of abcesses: preparation, analysis, tissuedistribution and comparison with gallium-67 citrate in dogs. Lab Clin Med 1977; 89: 217–228.

    CAS  Google Scholar 

  2. Roddie ME. Imaging inflammation with Tc-99m hexamethyl propylene amine oxime (HMPAO) labelled leucocytes. Radiol 1988; 166: 767–772.

    CAS  Google Scholar 

  3. Segal AW, Arnot RN, Thakur ML, and Lavender JP. Indium-111 labelled granulocytes for the diagnosis of abcesses. Lancet 1976; ii: 1056–1061.

    Article  Google Scholar 

  4. Danpure HJ, Osman S and Brady F. The labelling of blood cells in plasma with Indium-111 tropolonate. Br J Radiol 1982; 55: 247–249.

    Article  PubMed  CAS  Google Scholar 

  5. Nowotnik DP, Canning LR, Cummings SA, et al. Development of a Tc-99m labelled radiopharmaceutical for cerebral blood flow imaging. Nucl Med Comm 1985; 6: 499–506.

    Article  CAS  Google Scholar 

  6. Srivastava SC and Straub RF. Blood cell labelling with Tc-99m: Progress and Prospectives. Semin Nucl Med 1990; 20: 41–51.

    Article  PubMed  CAS  Google Scholar 

  7. Neirinckx RD, Canning LR, Piper IM et al. Technetium-99m d,l-HMPAO: A new radiopharmaceutical for SPECT imaging of regional cerebral blood perfusion. J Nucl Med 1987; 28: 191–207.

    PubMed  CAS  Google Scholar 

  8. Neirinckx RD, Burke JF, Harrison RC et al. The retention mechanism of technetium-99m labelled HMPAO: intracellular reaction with glutathione. J Cerebr Blood Flow Metabol 1988; 8: S4–S12.

    Article  CAS  Google Scholar 

  9. Babich JW. Technetium-99m HMPAO retention and the role of glutathione-the debate continues. J Nucl Med 1991; 32: 1681–1683.

    PubMed  CAS  Google Scholar 

  10. Ceretec Package Insert. 1985 Amersham plc.

    Google Scholar 

  11. Sampson CB and Solanki. Tc-99m labelled exametazime leucocytes: a high-efficiency multi-dose radiolabelling method using a high concentration and low volume of ligand. Nucl Med Comm; 12: 719–723.

    Google Scholar 

  12. Sampson CB. Stabilisation of Tc-99m exametazime using ethanol and storage at a low temperature. Proceedings of European Association of Nuclear Medicine Congress, Vienna 1991. Abstract No FP-212-4.

    Google Scholar 

  13. Solanki C and Sampson CB. Stabilisation of exametazime for leucocyte labelling: a new approach using tin enhancement. Nucl Med Comml 1993; 14: 1035–1040.

    Article  CAS  Google Scholar 

  14. Sampson CB and Solanki C. Technetium labelled leucocytes using diethyldithio-carbamate. Preliminary report on in-vitro studies. Nucl Med Comm 1988; 123–127.

    Google Scholar 

  15. McLaughlin AM, Martin W, Tweddel et al. White cells and platelet deposition during cardiopulmonary bypass. Nucl Med Comm 1991; 12: 307–308.

    Google Scholar 

  16. Ellis B. The development of Novel Bidentate Chelators for Radiolabelling of Cells. Doctoral Thesis 1993. King’s College, University of London.

    Google Scholar 

  17. Danpure HJ. Cell Labelling with In-111 complexes. In: Theobald AE, editor. Radiopharmacy and Radiopharmaceuticals. Taylor and Francis, London and Philadelphia 1985. 51–85.

    Google Scholar 

  18. Danpure HJ and Osman S. Radiolabelling of blood cells-theory. In: Sampson CB editor. Textbook of Radiopharmacy. Gordon and Breach Science Publishers, USA Switzerland 1994 69–74.

    Google Scholar 

  19. Sampson CB and Solanki C. Separation and technetium labelling of pure neutrophils: development of a simple and rapid protocol. Nucl Med Comm 1992; 13: 210.

    Article  Google Scholar 

  20. Sewchand LS and Canham PB. Modes of rouleaux formation of human red blood cells in polyvinylpyrrolidone and dextran solutions. Can J Physiol Pharmacol 1979; 57: 1213–1223.

    Article  PubMed  CAS  Google Scholar 

  21. Sampson CB and Solanki C. Does plasma fat, viscosity or erythrocyte sedimentation rate affect the radiolabelling of leucocytes? Nucl Med Comm 1989; 10: 224.

    Google Scholar 

  22. Berge ten RJM, Natarajan AT, Hardeman MR et al. Labelling with Indium-111 has Detrimental Effects on Human Lymphocytes: Concise Communication. J Nucl Med 1983; 24: 615–620.

    Google Scholar 

  23. Segal AW, Deteix P, Garcia R. Indium-111 labelling of leucocytes: a detrimental effect on neutrophil and lymphocyte function and an improved method of cell labelling. J Nucl Med 1978; 19: 1238–1244.

    Google Scholar 

  24. Mertz T. Technetium-99m labelled lymphocytes: a radiotoxicity study. J Nucl Med 1986; 27: 105–110.

    Google Scholar 

  25. Sampson CB and Goffin E. Technetium-labelled autologous lymphocytes: clinical protocol for radiolabelling using a high concentration and low volume of Tc-99m exametazime. Nucl Med Comm 1991; 12: 875–878.

    Article  CAS  Google Scholar 

  26. Sampson CB. Technetium labelled lymphocytes: a plain man’s guide to separation and radiolabelling. Nucl Med Comm 1992; 13: 400.

    Article  Google Scholar 

  27. Sampson CB. Technetium Labelling of Ceretec. Nucl Med Commun 1992; 13: 121–122.

    Google Scholar 

  28. Schroth HJ, Oberhausen E, Berberich R. Cell labelling with colloidal substances in whole blood. Eur J Nucl Med 1986; 6: 469–479.

    Google Scholar 

  29. Hanna RW, Lomas FE. Identification of factors affecting technetium-99m leucocyte labelling by phagocytic engulfment and development of an optimal technique. Eur J Nucl Med 1986; 12: 159–169.

    Article  PubMed  CAS  Google Scholar 

  30. Puncher MRB, Blower PJ. Labelling of leucocytes with colloidal technetium-99m SnF12: an investigation of the labelling process by autoradiography. Eur J Nucl Med 1995; 22: 101–107.

    Article  PubMed  CAS  Google Scholar 

  31. Locher JTH, Seybold K, Anders REY et al. Imaging of inflammatory and infectious lesions after injection of radiolabelled monoclonal-granulocyte antibodies. Nucl Med Comm 1986; 7: 659–665.

    CAS  Google Scholar 

  32. Becker W, Emmerich F, Horneff G et al. Imaging rheumatoid arthritis specifically with technetium-99m CD4-specific (T-helper lymphocytes) antibodies. Eur J Nucl Med; 17: 156–159.

    Google Scholar 

  33. Signore A, Parman A, Pozzilli P et al. Detection of activated lymphocytes in endocrine pancreas of BB/W rats by injection of 1-123 iodine labelled interleukine-2: an early sign of Type 1 diabetes. Lancet 1987; ii: 536–540.

    Google Scholar 

  34. Pharmaceutical and clinical problems with radiolabelled blood cells: a review. Nucl Med Commun 1996 (in press).

    Google Scholar 

  35. Sampson CB. Interference of patient medication in the radiolabelling of blood cells: in-vitro and in-vivo effects. In: Sinzinger H, editor. Radioactive Isotopes in Clinical Medicine and Research. 1995 Birkhause, Basel 315–322.

    Chapter  Google Scholar 

  36. Sampson CB. Effect of patient medication on white cell labelling. Br J Radiol 1996 in press.

    Google Scholar 

  37. Bunting H. Sedimentation rates of sickled and non-sickled cells from patients with sickle cell anaemia. Am J Med Sci 1940; 191–193.

    Google Scholar 

  38. Porter Wc, Dees SM, Freitag JE et al. Effect of heparin and acid-citrate-dextrose on labelling efficiency of Tc-99m labelled RBCs. J Nucl Med 1983; 24: 383–385.

    PubMed  CAS  Google Scholar 

  39. Sampson CB. Adverse effects and drug interactions with radiopharmaceuticals. Drug Safety 1993; 8: 280–294.

    Article  PubMed  CAS  Google Scholar 

  40. Myler’s. Side Effects of Drugs Annual 17. Editors Aronson JK, Boxted van CJ, 1993. Elsevier, Amsterdam, New York.

    Google Scholar 

  41. MacGregor RR, Spaguolo PJ, Lentner AL. Inhibition of Granulocyte adherence by Ethanol, Prednisone and Aspirin measured with an assay System. N Engl J Med 1974: 642–645.

    Google Scholar 

  42. MacGregor RR, Thorner RE, Wright DNM. Lidocaine Inhibits Granulocyte Adherence and prevents Granulocyte Delivery to Inflammatory Sites. Blood 1980; 2: 203–207.

    Google Scholar 

  43. Nielsen VG and Webster RO. Inhibition of polymorphonuclear leucocyte functions by ibuprofen. Immunopharmacology 1987; 13: 61–71.

    Article  PubMed  CAS  Google Scholar 

  44. Cairo MS, Mallett C, Vande Ven C, et al. Impaired In-Vitro Polymorphonuclear Function Secondary to the Chemotherapeutic Effects of Vincristine, Adriamycin, Cyclophosphamide, and Actinomycin D. J Clin Oncol 1986; 4: 798–804.

    PubMed  CAS  Google Scholar 

  45. Mortelmans L, Verbruggen A, Bogaerts M et al. Evaluation of granulocyte labelling with In-111 chelated to three different agents by functional tests and electron microscopy. J Nucl Med 1986; 25: 125–135.

    Google Scholar 

  46. Babior BM, Cohen HJ. Measurement of neutrophil function: phagocytosis, degranulation, the respiratory bust and basterial killing. In: Methods in Haematology editor Cline MJ, Churchill Livingstone, London, 1981: 1–38.

    Google Scholar 

  47. Saverymuttu SH, Peters AM, Danpure HJ et al. Lung transit of labelled ranulocytes, relationship to labelling techniques. Scand J Haematol 1983; 30: 151–156.

    Article  PubMed  CAS  Google Scholar 

  48. Maltby P. Methods for assessing white cell viability. Br J Radiol 1966 (in press).

    Google Scholar 

  49. Guidance Notes for Hospitals. Premises and Environment for the Preparation of Radiopharmaceuticals in Hospitals. 1982. DHSS London.

    Google Scholar 

  50. Institute of Physical Sciences in Medicine. In: Hospital Radiopharmacy Principles and Practice. Frier M, Hesslewood SR, Lawrence R editors. Report No 56 1988.

    Google Scholar 

  51. Lazarus C. Design of Hospital Radiopharmacy Laboratories. In Textbook of Radiopharmacy, Theory and Practice. Editor Sampson CB. Harwood Academic Publishers, London, Switzerland 1994: 51–58.

    Google Scholar 

  52. The Rules Governing Medicinal Products in the European Cummunity, Volume IV. In: Guide to Good Manufacturing Practice for Medicinal Products, 1989. Brussels, Luxembourg.

    Google Scholar 

  53. Isolators for Pharmaceutical Applications. Editors Lee GM and Midcalf B. 1995. HMSO, London.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sampson, C.B. (1998). Labelled Cells for Imaging Infection. In: Cox, P.H., Buscombe, J.R. (eds) The Imaging of Infection and Inflammation. Developments in Nuclear Medicine, vol 31. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4990-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4990-7_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6094-3

  • Online ISBN: 978-94-011-4990-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics