Skip to main content

The impact of ischemia-reperfusion injury on specific and non-specific, early and late chronic events after organ transplantation

  • Chapter

Part of the book series: Transplantation and Clinical Immunology ((TRAC,volume 30))

Abstract

In Part I of this series [1] we presented a collection of accumulating evidence suggesting a substantial impact of post-ischemic reperfusion injury on early events after organ transplantation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Land W, Meßmer K. The impact of ischemia/reperfusion injury on specific and non-specific, early and late chronic events after organ transplantation. Early events. Transplant. Rev. 1996; 10: 108.

    Article  Google Scholar 

  2. Tilney NL, Whiteley WD, Diamond JR et al. Chronic rejection - an undefined conundrum. Transplantation. 1991; 52: 389.

    Article  PubMed  CAS  Google Scholar 

  3. Paul LC, Fellström B. Chronic vascular rejection of the heart and the kidney - have rational treatment options emerged? Transplantation. 1992; 53: 1169.

    Article  PubMed  CAS  Google Scholar 

  4. Häyry P, Isoniemi H, Yilmaz S et al. Chronic allograft rejection. Immunol. Rev. 1993; 134: 133.

    Article  Google Scholar 

  5. Paul LC. Functional and histological characteristics of chronic renal allograft rejection. Clin. Transplant. 1993; 8: 319.

    Google Scholar 

  6. Matas A. Chronic rejection in renal transplant recipients - risk factors and correlates. Clin. Transplant. 1994; 8: 332.

    PubMed  CAS  Google Scholar 

  7. Sibley RK. Morphologic features of chronic rejection in kidney and less commonly transplanted organs. Clin. Transplant. 1994; 8: 293.

    PubMed  CAS  Google Scholar 

  8. Land W. Chronisches Transplantatversagen: wie ist die Transplantatarteriosklerose zu verhüten? Therapiewoche. 1995; 34: 1982.

    Google Scholar 

  9. Land W. Das chronische Transplantatversagen. Ätiopathogenese unter spezieller Berücksichtigung immunologischer Faktoren. Münchn. Med. Wschr. 1996; 138: 119.

    Google Scholar 

  10. Land W, Schneeberger H, Schleibner S et al. The beneficial effect of human recombinant superoxide dismutase on acute and chronic rejection events in recipients of cadaveric renal transplants. Transplantation. 1994; 57: 211.

    Article  PubMed  CAS  Google Scholar 

  11. Troppmann Ch, Gillingham KJ, Benedetti E et al. Delayed graft function, acute rejection, and outcome after cadaveric renal transplantation. A multivariate analysis. Transplantation. 1995; 59: 962.

    CAS  Google Scholar 

  12. Terasaki PI, Cecka JH, Gjertson DW et al. High survival rates of kidney transplants from spousal and living unrelated donors. N. Engl. J. Med. 1995; 333: 333.

    Article  PubMed  CAS  Google Scholar 

  13. Opelz G, Wujciak T, Mytilineos J et al. Revisiting HLA matching for kidney transplantation. Transplant. Proc. 1993; 173.

    Google Scholar 

  14. Halliwell B. Oxidants and human disease: some new concepts. FASEB J. 1987; 1: 358.

    PubMed  CAS  Google Scholar 

  15. Biemond P, van Eijk HG, Swaak AJG, Koster JF. Iron mobilization from ferritin by 02-derived from stimulated polymorphonuclear leukocytes. Possible mechanism in inflammation disease. J. Clin. Invest. 1984; 73: 1576.

    Article  PubMed  CAS  Google Scholar 

  16. Ames BN. Oxidative DNA damage, cancer, and aging. Cross CE: moderator. Oxygen radicals and human disease. Ann. Intern. Med. 1989; 7: 121.

    CAS  Google Scholar 

  17. Woodruff T, Blake DR, Freeman J et al. Is chronic synovitis an example of reperfusion injury? Ann. Rheum. Dis. 1986; 45: 608.

    Article  PubMed  CAS  Google Scholar 

  18. Halliwell B. Proceedings of the Upjohn symposium on oxidants and disease. Bethesda, Federation of American Societies for Experimental Biology; 1984: 1988.

    Google Scholar 

  19. Halliwell B. Current status review: free radicals, reactive oxygen species and human disease: a critical evaluation with special reference to atherosclerosis. Br. J. Exp. Pathol. 1989; 70: 737.

    PubMed  CAS  Google Scholar 

  20. Silverman DJ, Santucci LA. Potential for free radical-induced lipid peroxidation as a cause of endothelial cell injury in rocky mountain spotted fever. Infect. Immunol. 1988; 56: 3110.

    CAS  Google Scholar 

  21. Whorton AR, Montgomery ME, Kent RS. Effect of hydrogen peroxide on prostagladin production and cellular integrity in cultured porcine aortic endothelial cells. J. Clin. Invest. 1985; 76: 295.

    Article  PubMed  CAS  Google Scholar 

  22. Fridovich I. Superoxide dismutases. Adv. Enzymol. 1974; 41: 35.

    PubMed  CAS  Google Scholar 

  23. Kukreja RC, Hess ML. The oxygen free radical system: from equations through membrane-protein interactions to cardiovascular injury and protection. Cardiovasc. Res. 1992; 26: 641.

    Article  PubMed  CAS  Google Scholar 

  24. Halliwell B, Gutteridge JMC. Free Radicals in Biology and Medicine. Oxford: Clarendon Press; 1985.

    Book  Google Scholar 

  25. Carew TE, Schwenke DC, Steinberg D. Antiatherogenic effect of probucol unrelated to its hypo-cholesterolaemic effect: evidence that antioxidants in vivo can selectively inhibit LDL degradation in macrophage-rich fatty streaks and slow the progression of atherosclerosis in the Watanabe heritable hyperlipidemic rabbit. Proc. Natl. Acad. Sci. USA. 1987; 84: 7725.

    Article  PubMed  CAS  Google Scholar 

  26. Bernheimer AW, Robinson WG, Linder R et al. Toxicity of enzymically-oxidized low-density lipoprotein. Biochem. Biophys. Res. Commun. 1987; 148: 260.

    Article  CAS  Google Scholar 

  27. Prasad K, Kalra J. Experimental atherosclerosis and oxygen free radicals. Angiology. 1989; 40: 835.

    Article  PubMed  CAS  Google Scholar 

  28. Wilson RB. Lipid peroxidation and atherosclerosis. CRC Crit. Rev. Food Sci. Nutr. 1976; 8: 325.

    Google Scholar 

  29. Wolff SP, Dean RT. Glucose autoxidation and protein modification. The potential role of `autoxidative glycosylation’ in diabetes. Biochemistry. 1987; 245: 243.

    CAS  Google Scholar 

  30. Steinberg D, Parthasarathy S, Carew TE et al. Beyond cholesterol. Modifications of low-density lipoprotein that increases its atherogenicity. N. Engl. J. Med. 1989; 320: 915.

    Article  PubMed  CAS  Google Scholar 

  31. French JE. Atherosclerosis in relation to the structure and function of the arterial intima, with special reference to the endothelium. Int. Rev. Exp. Pathol. 1966; 5: 253.

    PubMed  CAS  Google Scholar 

  32. Mustard JF, Packham MA. The role of blood and platelets in atherosclerosis and the complication of atherosclerosis. Thromb. Diath. Haemorrh. 1975; 33: 444–456.

    PubMed  CAS  Google Scholar 

  33. Ross R, Glomset JA. Atherosclerosis and the arterial smooth muscle cell. Science. 1973; 180: 1332–1339.

    Article  PubMed  CAS  Google Scholar 

  34. Virchow R. Gesammelte Abhandlungen zur Wissenschaftl. Medizin. Berlin: Verlag Meidinger, Sohn; 1856; 458.

    Google Scholar 

  35. Ross R, Glomset JA. N. Engl. J. Med. 1976; 295: 369.

    Article  PubMed  CAS  Google Scholar 

  36. Ross R, Harker L. Hyperlipidemia and atherosclerosis: chronic hyperlipidemia initiates and maintains lesions by endothelial cell desquamation and lipid accumulation. Science. 1976; 193: 1094–1100.

    Article  PubMed  CAS  Google Scholar 

  37. Ross R. Atheriosclerosis: A problem of the biology of arterial wall cells and their interactions with blood components. Arteriosclerosis. 1981; 1: 293.

    Article  PubMed  CAS  Google Scholar 

  38. Ross R. The pathogenesis of atherosclerosis - an update. N. Engl. J. Med. 1986; 314: 488.

    Article  PubMed  CAS  Google Scholar 

  39. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 1993; 362: 801.

    Article  PubMed  CAS  Google Scholar 

  40. Steinbrecher UP, Zhang HF, Lougheed M. Role of oxidatively modified LDL in atherosclerosis. Free Radical Biol. Med. 1990; 9: 155.

    Article  CAS  Google Scholar 

  41. Steinberg D. Antioxidants and atherosclerosis. A current assessment. Circulation. 1991; 84: 1420.

    Article  PubMed  CAS  Google Scholar 

  42. Masuda J, Ross R. Atherogenesis during low level hypercholesterolemia in the nonhuman primate. I. Fatty streak formation. II. Fatty streak conversion to fibrous plaque. Arteriosclerosis. 1990; 10: 164.

    Article  PubMed  CAS  Google Scholar 

  43. Rosenfeld ME, Tsukada T, Chait A, Bierman EL, Gown AM, Ross R. Fatty streak expansion and maturation in Watanaba heritable hyperlipemic and comparably hypercholesterolemic fat-fed rabbits. Arteriosclerosis. 1987; 7: 24.

    Article  PubMed  CAS  Google Scholar 

  44. Mora R, Lupu F, Simionescu N. Prelesional events in atherogenesis: colocalization of apolipoprotein B, unesterified cholesterol and extracellular phospholipid liposomes in the aorta of hyperlipidemic rabbit. Atheriosclerosis, 1987; 67: 143.

    Article  CAS  Google Scholar 

  45. Tsukada T, Rosenfeld ME, Ross R et al. Immunocytochemical analysis of cellular components in atheriosclerotic lesions. Use of monoclonal antibodies with the Watanaba and fat-fed rabbit. Arteriosclerosis. 1986; 6: 601.

    Article  PubMed  CAS  Google Scholar 

  46. Davies MJ, Woolf N, Rowles PM et al. Morphology of the endothelium over atherosclerotic plaques in human coronary arteries. Br. Heart J. 1988; 60: 459.

    Article  PubMed  CAS  Google Scholar 

  47. Hart CE, Forstrom JW, Kelly JD et al. Two classes of PDGF receptor recognize different isoforms of PDGF. Science. 1988; 240: 1529.

    Article  PubMed  CAS  Google Scholar 

  48. Heldin CH, Westermark B. Platelet-derived growth factor: mechanism of action and possible in vivo function. Cell Reg. 1990; 1: 555.

    CAS  Google Scholar 

  49. Banskota NK, Taub R, Zenner K et al. Insulin, insulin-like growth factor 1 and platelet-derived growth factor interact additively in the induction of the protooncogene c myc and cellular proliferation in cultured bovine aortic smooth muscle cells. Mol. Endocrinol. 1989; 3: 1183.

    Article  PubMed  CAS  Google Scholar 

  50. Libby P, Warner SJ, Friedman GB. Interleukin-1: a mitogen for human vascular smooth muscle cells that induces the release of growth-inhibitory prostanoids. J. Clin. Invest. 1988; 81: 487.

    Article  PubMed  CAS  Google Scholar 

  51. Old LJ. Tumor necrosis factor (TNF). Science. 1985; 230: 630.

    Article  PubMed  CAS  Google Scholar 

  52. Häyry P, Yilmaz S. Role of growth factors in graft vessel disease. Transplant. Proc. 1995; 27: 2066.

    Google Scholar 

  53. Ylä-Herttuala S, Lipton BA, Rosenfeld ME et al. Expression of monocyte chemoattractant protein 1 in macrophage-rich areas of human and rabbit atherosclerotic lesions. Proc. Natl. Acad. Sci. USA. 1991; 88: 5252.

    Article  PubMed  Google Scholar 

  54. Ferns GA, Raines EW, Sprugel KH, Motani AS, Reidy MA, Ross R. Inhibition of neointimal smooth muscle accumulation after angioplasty by an antibody to PDGF. Science. 1991; 253: 1129.

    Article  PubMed  CAS  Google Scholar 

  55. Springer TA. Adhesion receptors of the immune system. Nature. 1990; 346: 425.

    Article  PubMed  CAS  Google Scholar 

  56. Cybulsky M, Gimbrone MA Jr. Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science. 1991; 251: 788.

    Article  PubMed  CAS  Google Scholar 

  57. Carlos TM, Harlan JM. Membrane proteins involved in phagocyte adherence to endothelium. Immunol. Rev. 1990; 114: 5.

    Article  PubMed  CAS  Google Scholar 

  58. Goldstein JL, Ho YK, Basu SK, Brown MS. Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc. Natl. Acad. Sci. USA. 1979; 76: 333.

    Article  PubMed  CAS  Google Scholar 

  59. Parthasarathy S, Wieland E, Steinberg D. A role for endothelial cell lipoxygenase in the oxidative modification of low density lipoprotein. Proc. Natl. Acad. Sci. USA. 1989; 86: 1046.

    Article  PubMed  CAS  Google Scholar 

  60. Zweier JL, Broderick R, Kuppusamy P et al. Determination of the mechanism of free radical generation in human aortic endothelial cells exposed to anoxia and reoxygenation. J. Biol. Chem. 1994; 269: 24156.

    PubMed  CAS  Google Scholar 

  61. Zweier JL, Kuppusamy P, Thompson-Gorman S et al. Measurement and characterization of free radical generation in reoxygenated human endothelial cells. Am. J. Physiol. 1994; 266: C700.

    PubMed  CAS  Google Scholar 

  62. McCord JM. Oxygen-derived free radicals in post ischemic tissue injury. N. Engl. J. Med. 1985; 312: 159.

    Article  PubMed  CAS  Google Scholar 

  63. Akyürek ML, Funa K, Wanders A et al. Expression of CD 1 lb and ICAM-1 in an in vivo model of transplant arteriosclerosis. Transplant. Immunol. 1995; 3: 107.

    Article  Google Scholar 

  64. Gohra H, McDonald TO, Verrier ED et al. Endothelial loss and regeneration in a model of transplant arteriosclerosis. Transplantation. 1995; 60: 96.

    Article  PubMed  CAS  Google Scholar 

  65. Wanders A, Akyürek ML, Waltenberger J et al. Ischemia-induced transplant arteriosclerosis in the rat. Arteroscler. Thromb. Vase. Biol. 1995; 15: 145.

    CAS  Google Scholar 

  66. Wanders A, Waltenberger J. Transplantation models of accelerated arteriosclerosis and their use for morphological and molecular analysis.

    Google Scholar 

  67. Akyürek ML, Wanders A, Aurivillius M, Larsson E, Funa K, Fellström BC. Effects of angiopeptin on transplant arteriosclerosis in the rat. Transplant. Int. 1995; 8: 103.

    Article  Google Scholar 

  68. Yilmaz S, Paavonen T, Häyry P. Chronic rejection of rat kidney allografts. II. The impact of prolonged ischemia on transplant histology. Transplantation. 1992; 53: 823.

    Article  PubMed  CAS  Google Scholar 

  69. Yilmaz A, Yilmaz S, Kallio E, Rapola J, Häyry P. Evolution of glomerular basement membrane changes in chronic rejection. Transplantation. 1996 (in press).

    Google Scholar 

  70. Myllärniemi M, Rälsänen-Sokolowski A, Vuoristo P et al. Lack of effect of recombinant human superoxide dismutase on cold ischemia-induced arteriosclerosis in syngeric rat aortic transplants. Transplantation. 1996; 61: 1018.

    Article  PubMed  Google Scholar 

  71. Schmid C, Heemann UW, Azuma H, Tilney NI. Transplant vasculopathy in rat heart transplantation: a morphologic Chameleon determined by antigen-dependent and -independent factors. Transplant. Proc. 1995; 27: 2077.

    PubMed  CAS  Google Scholar 

  72. Tullius SG, Heemann UW, Hancock WW et al. Long-term kidney isografts develop functional and morphologic changes that mimic those of chronic allograft rejection. Ann. Surg. 1994; 220: 425.

    Article  PubMed  CAS  Google Scholar 

  73. Tilney NL. Renal transplantation between identical twins: a review. World J. Surg. 1986; 10: 381.

    Article  PubMed  CAS  Google Scholar 

  74. Glassock RJ, Feldman D, Reynolds EG et al. Human renal isografts: a clinical and pathological analysis. Medicine. 1968; 47: 411.

    Article  PubMed  CAS  Google Scholar 

  75. Dammin GJ. Renal transplants: correlations of histological patterns with function in the kidney. In: Mostofi FK, Smith DE (eds.), The Kidney. Baltimore, Williams & Wilkins; 1966: 445.

    Google Scholar 

  76. Hostetter TH, Olson JL, Rennke HG et al. Hyperfiltration in remnant nephrons: a potentially adverse response to renal ablation. Am. J. Physiol. 1981; 241: F85.

    PubMed  CAS  Google Scholar 

  77. Brenner BM. Hemodynamically mediated glomerular injury and the progressive nature of glomerular disease. Kidney Int. 1983; 23: 647.

    Article  PubMed  CAS  Google Scholar 

  78. Heemann UW, Azuma H, Tullius SG et al. The contribution of reduced functioning mass to chronic kidney allograft dysfunction in rats. Transplantation. 1994; 58: 1317.

    PubMed  CAS  Google Scholar 

  79. Land W, Schleibner S, Hillebrand G et al. Long-term results under Ciclosporine therapy in cadaveric renal transplantation. XII. Int. Congr. The Transplantation Soc. San Francisco, 1990 Symposium and Poster Abstracts, p. 110.

    Google Scholar 

  80. Land Wb, Schneeberger H, Schleibner S et al. Long-term results in cadaveric renal transplantation under Ciclosporine therapy. Transplant. Proc. 1991; 23: 1244.

    PubMed  CAS  Google Scholar 

  81. Tesi RU, Henry ML, Elkhammas EA et al. Predictors of long-term primary cadaveric renal transplant survival. Clin. Transplant. 1993; 7: 343.

    Google Scholar 

  82. Almond PS, Matas AJ, Gillingham K et al. Risk factors for chronic rejection in renal allograft recipients. Transplantation. 1993; 55: 752.

    Article  PubMed  CAS  Google Scholar 

  83. Lindholm A, Ohlman S, Albrechtsen D et al. The impact of acute rejection episodes on longterm graft function and outcome in 1347 primary renal transplants treated by 3 cyclosporine regimens. Transplantation. 1993; 56: 307.

    Article  PubMed  CAS  Google Scholar 

  84. Isoniemi H, Nurminen M, Tikkanen MJ et al. risk factors predicting chronic rejection of renal allografts. Transplantation. 1994; 57: 68.

    Article  PubMed  CAS  Google Scholar 

  85. Yilmaz S, Häyry P. The impact of acute episodes of rejection on the generation of chronic rejection in rat renal allografts. Transplantation. 1993; 56: 1153.

    Article  PubMed  CAS  Google Scholar 

  86. Solez K. International standardization of criteria for histological diagnosis of chronic rejection in renal allografts. Clin. Transplant. 1994; 8: 345.

    PubMed  CAS  Google Scholar 

  87. Salom R, Maguire J, Esmore, Hancock W. Endothelial cell activation and cytokine expression during acute human cardiac allograft rejection. Transplant. Proc. 1995; 27: 2164.

    PubMed  CAS  Google Scholar 

  88. Orosz CG. Endothelial activation and chronic allograft rejection. Clin. Transplant. 1994; 8: 299.

    PubMed  CAS  Google Scholar 

  89. Heemann UW, Tullius SG, Azuma H et al. Adhesion molecules and transplantation. Ann. Surg. 1994; 219: 4.

    Article  PubMed  CAS  Google Scholar 

  90. Fuggle S, Sanderson JB, Gray DWR et al. Variation in expression of endothelial adhesion molecules in pretransplant and transplanted kidneys - correlation with intragraft events. Transplantation. 1993; 55: 117.

    Article  PubMed  CAS  Google Scholar 

  91. Opelz G, Wujciak T for the Collaborative Transplant Study. Comparative analysis of kidney preservation methods. Transplant. Proc. 1996; 28: 87.

    PubMed  CAS  Google Scholar 

  92. Gerston DW. Short-and long-term effects of HLA matching. Clin. Transplant. 1989: 353.

    Google Scholar 

  93. Petersen P, Schneeberger H, Schleibner S et al. HLA matching and short/longterm outcome of cadaveric renal allografts: large single-centre data confirm the multicentre analyses. Transplant. Proc. 1995; 27: 651.

    PubMed  CAS  Google Scholar 

  94. Ferguson RM. Acute rejection episodes. Best predictor of long-term primary cadaveric renal transplant survival. Clin. Transplant. 1994; 8: 328.

    PubMed  CAS  Google Scholar 

  95. Paul LC. Experimental models of chronic renal allograft rejection. Transplant. Proc. 1995; 27: 2126.

    PubMed  CAS  Google Scholar 

  96. Heemann UW, Tullius SG, Tamatami T et al. Infiltration pattern of macrophages and lymphocytes in chronically rejecting rat kidney allografts. Transplant. Int. 1994; 7: 349.

    Article  CAS  Google Scholar 

  97. Schmid C, Hemann UW, Tilney NL. Die chronische Abstoßung des Herzens im Rattenmodell. Entwicklung der Transplantatvaskulopathie, zelluläre Infiltration and Expression der Zelloberflächenmole-küle. Z. Herz-, Thorax-Gefäßchir. 1995; 9: 164.

    Google Scholar 

  98. Diamond JR, Tilney NL, Frye J et al. Progressive albuminuria and glomerulosclerosis in a rat model of chronic renal allograft rejection. Transplantation. 1992; 54: 710.

    Article  PubMed  CAS  Google Scholar 

  99. Azuma H, Heemann UW, Tullius SG, Tilney NL. Cytokines and adhesion molecules in chronic rejection. Clin. Transplant. 1994; 8: 168.

    PubMed  CAS  Google Scholar 

  100. Tilney NL. Thoughts on the immunobiology of chronic allograft rejection. Transplant. Proc. 1995; 27: 2123.

    PubMed  CAS  Google Scholar 

  101. Fellström BC, Akyürek L. Dimény EM et al. Chronic vascular rejection (CVR). Mitt. Klin. Nephrologie. 1995; 24: 41.

    Google Scholar 

  102. Waltenberger J, Wanders A, Fellström BC et al. Induction of transforming growth factor-ß during cardiac allograft rejection. J. Immunol. 1993; 151: 1147.

    PubMed  CAS  Google Scholar 

  103. Waltenberger J, Akyürek ML, Aurivillius M et al. Ischemia-induced transplant arteriosclerosis in the rat. Induction of peptide growth factor expression. Arterioscler. Thromb. Vasc. Biol. 1996; 15: 145.

    Google Scholar 

  104. Libby P, Tanaka H. The pathogenesis of coronary arteriosclerosis (chronic rejection) in transplanted hearts. Clin. Transplant. 1994; 8: 313.

    PubMed  CAS  Google Scholar 

  105. Karnovsky MJ, Russell ME, Hancock W et al. Chronic rejection in experimental cardiac transplantation in a rat model. Clin. Transplant. 1994; 8: 308.

    PubMed  CAS  Google Scholar 

  106. Fellström BC. Immune injury - is it all there is to chronic graft rejection? Nephrol. Dial. Transplant. 1995; editorial [comments p. 149].

    Google Scholar 

  107. Helderman JH, van Buren DH, Amend WJC et al. Chronic immunosuppression of the renal transplant patient. J. Am. Soc. Nephrol. 1994; 4: 52 (Suppl. 1).

    Google Scholar 

  108. Kuo I, Monaco AP. Chronic rejection as a result of suboptimal immunosuppression. Transplant. Proc. 1993; 25: 2082.

    PubMed  CAS  Google Scholar 

  109. Ponticelli C, Minetti L, Di Palo FW et al. The Milan clinical trial with Ciclosporine in cadaveric renal transplantation. A three year follow-up. Transplantation. 1988; 45: 908.

    Article  PubMed  CAS  Google Scholar 

  110. Land W, Schneeberger H, Kapsner T, Zanker B. Risk factors for chronic transplant failure. The 4th Congress of the Asian Society of Transplantation, August 1995, Seoul, Korea, Abstract Vol, p.14.

    Google Scholar 

  111. Andersen HO, Holm P, Stender S et al. Relative importance of ischemic injury and immunologic injury in the development of transplant arteriosclerosis in rabbit aortic allografts. Transplantation. 1995; 60: 631.

    Article  PubMed  CAS  Google Scholar 

  112. Tullius SG, Hancock WW, Heemann UW et al. Reversibility of chronic renal allograft rejection. Transplantation. 1994; 58: 93.

    PubMed  CAS  Google Scholar 

  113. Izutani H, Miyagawa S, Shirakura R et al. Evidence that graft coronary arteriosclerosis begins in the early phase after transplantation and progresses without chronic immunoreaction. Transplantation. 1995; 60: 1073.

    Article  PubMed  CAS  Google Scholar 

  114. Battegay EJ, Raines EW, Seifert RA et al. TGF-beta induces bimodal proliferation of connective tissue cells via complex control of an autocrine PDGF loop. Cell. 1990; 63: 515.

    Article  PubMed  CAS  Google Scholar 

  115. Libby P, Warner SJC, Salomon RN, Birinyi LK. Production of platelet-derived growth factor-like mitogen by smooth-muscle cells from human atheroma. N. Engl. J. Med. 1988; 318: 1493.

    Article  PubMed  CAS  Google Scholar 

  116. Wilcox JN, Smith KM, Williams LT et al. Platelet-derived growth factor mRNA detection in human atherosclerotic plaques by in situ hybridization. J. Clin. Invest, 1988; 82: 1134.

    Article  PubMed  CAS  Google Scholar 

  117. Ross R, Masuda J, Raines EW et al. Localization of PDGF-B protein in macrophages in all phases of atherogenesis. Science. 1990; 248: 1009.

    Article  PubMed  CAS  Google Scholar 

  118. Raines EW, Dower SK, Ross R. Interleukin-1 mitogenic activity for fibroblasts and smooth muscle cells is due to PDGF-AA. Science. 1989; 243: 393.

    Article  PubMed  CAS  Google Scholar 

  119. Hajjar KA, Hajjar DP, Silverstein RL, Nachman RL. Tumor necrosis factor-mediated release of platelet-derived growth factor from cultured endothelial cells. J. Exp. Med. 1987; 166: 235.

    Article  PubMed  CAS  Google Scholar 

  120. Ruscetti FW, Palladino MA. Transforming growth factor-beta and the immune system. Prog. Growth Factor Res. 1991; 3: 159.

    Article  PubMed  CAS  Google Scholar 

  121. Fellström BC, Akyürek ML, Dimény EM et al. Nonimmunologic factors involved in longterm renal allograft deterioration. Adv. Nephrol. 1996; 25: 51.

    Google Scholar 

  122. Rosenfeld ME, Ross R. Macrophage and smooth muscle cell proliferation in atherosclerotic lesions of WHHL and comparably hypercholesterolemic fat-fed rabbits. Arteriosclerosis. 1990. 10: 680.

    Article  PubMed  CAS  Google Scholar 

  123. Gordon D, Reidy MA, Benditt EP, Schwartz SM. Cell proliferation in human coronary arteries. Proc. Natl. Acad. Sci. USA. 1990; 87: 4600.

    Article  PubMed  CAS  Google Scholar 

  124. Rosenfeld ME, Ylä-Herttuala S, Lipton BA et al. Macrophage colony-stimulating factor mRNA and protein in atherosclerotic lesions of rabbits and humans. Am. J. Pathol. 1992; 140: 291.

    PubMed  CAS  Google Scholar 

  125. Libby P, Tanaka H, Swanson SJ et al. The role of cytokines in graft vessel disease after cardiac transplantation. Transplant. Proc. 1995; 27: 2062.

    PubMed  Google Scholar 

  126. Shimokado K, Raines EW, Madtes DK et al. A significant part of macrophage-derived growth factor consists of at least two forms of PDGF. Cell. 1985; 43: 277.

    Article  PubMed  CAS  Google Scholar 

  127. Libby P, Ordovas JM, Auger KR et al. Endotoxin and tumor necrosis factor induce interleukin-1-gene expression in adult human vascular endothelial cells. Am. J. Pathol. 1986; 124: 179.

    PubMed  CAS  Google Scholar 

  128. Libby P, Friedman GB, Salomon RN. Cytokines as modulators of cell proliferation in fibrotic diseases. Am. Rev. Resp. Dis. 1989; 140: 1114.

    PubMed  CAS  Google Scholar 

  129. Land W, Schneeberger H, Hillebrand S et al. Unspecific primary ischemia reperfusion injury in combination with secondary specific acute rejection-mediated injury of kidney allografts contributes mainly to development of chronic transplant failure. XVI.

    Google Scholar 

Download references

Authors

Editor information

J. L. Touraine J. Traeger H. Bétuel J. M. Dubernard J. P. Revillard C. Dupuy

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Land, W., Meßmer, K. (1998). The impact of ischemia-reperfusion injury on specific and non-specific, early and late chronic events after organ transplantation. In: Touraine, J.L., Traeger, J., Bétuel, H., Dubernard, J.M., Revillard, J.P., Dupuy, C. (eds) Organ Allocation. Transplantation and Clinical Immunology, vol 30. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4984-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4984-6_26

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6091-2

  • Online ISBN: 978-94-011-4984-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics