Skip to main content

The inflammatory cascade of liver ischemia and reperfusion: from the donor to the recipient

  • Chapter
Organ Allocation

Part of the book series: Transplantation and Clinical Immunology ((TRAC,volume 30))

Abstract

The first attempted liver transplantation was reported in 1955 by C. S. Welch, who described the insertion of an auxiliary graft in dogs [1]. Animal liver replacement (orthotopic transplantation) was performed 1 year later by J. Cannon [2]. At that time no immunosuppression was administered and preservation of the graft was not a crucial objective. Hence, results were affected by high rates of rejection and mortality. Improvements in organ preservation and development of immunosuppressive regimens, based on those used in kidney transplantation, prompted pioneering surgeons to transpose animal’s experience to humans. The years 1963 and 1964 saw these first attempts in the United States and Europe [3, 4]. However, none of the patients concerned survived more than 1 month. Therefore, pessimism prevailed world-wide concerning this procedure. Years of laboratory efforts led to a new wave of enthusiasm for human liver transplantation. From 1967 to 1980, several teams began a liver transplantation program but, despite considerable efforts, the resulting 1-year survival rates remained under 50% [5]. Albeit miraculous benefits were obtained, the procedure was considered feasible but impracticable on a large scale given the high mortality rates often occurring during the first postoperative months. Revolution came from the availability of cyclosporine as a new immunosuppressive drug in 1979 [6] and the development of the UW(University of Wisconsin) preservation solution at the end of the 1980s [7].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Welch CS. A note on transplantation of the whole liver in dogs. Transplant. Bull. 1956; 2: 54–55.

    Google Scholar 

  2. Cannon JA. Brief report. Transplant. Bull. 1956; 3: 7.

    Google Scholar 

  3. Starzl TE, Marchioro TL, von Kaulla KN et al. Homotransplantation of the liver in humans. Surg. Gynecol. Obst. 1963; 117: 659–676.

    CAS  Google Scholar 

  4. Demirleau J, Noureddine M, Vignes R et al. Tentative d’homogreffe hépatique. Mem. Acad. Chir. (Paris). 1964; 90: 177–179.

    CAS  Google Scholar 

  5. Starzl TE, Iwatsuki S, Van Thiel DH et al. Evolution of liver transplantation. Hepatology. 1982; 2: 614–636.

    Article  PubMed  CAS  Google Scholar 

  6. Calne RY, Rolles K, White DJG et al. Cyclosporin A initially as the only immunosuppressant in 34 recipients of cadaveric organs: 32 kidneys, 2 pancreases and 2 livers. Lancet. 1979; 2: 1033–1036.

    Article  PubMed  CAS  Google Scholar 

  7. Todo S, Nery J, Yanaga K, Podesta L, Gordon RD, Starzl TE: Extended preservation of human liver grafts with UW solution. JAMA. 1989; 261: 711–714.

    Article  PubMed  CAS  Google Scholar 

  8. Starzl TE, Klintkalm CBG, Porter KA, Iwatsuki S, Schroter GP: Liver transplantation with the use of cyclosporin A and prednisone. N. Engl. J. Med. 1981; 305: 266–269.

    Article  PubMed  CAS  Google Scholar 

  9. Stratta RJ, Wood RP, Langnas AN et al. The impact of extended preservation on clinical liver transplantation. Transplantation. 1990; 50: 438–443.

    Article  PubMed  CAS  Google Scholar 

  10. Olthoff KM, Millis JM, Imagawa DK et al. Comparison of UW solution and Euro-Collins solutions for cold preservation of human liver grafts. Transplantation 1990; 49: 284–290.

    Article  PubMed  CAS  Google Scholar 

  11. Adams PC, Ghent CN, Grant DR, Wall WJ. Employment after liver transplantation. Hepatology. 1995; 21: 140–144.

    PubMed  CAS  Google Scholar 

  12. Scoazec JY, Durand F, Degott C et al. Expression of cytokine-dependent adhesion molecules in postreperfusion biopsy specimens of liver allografts. Gastroenterology. 1994; 107: 1094–1102.

    PubMed  CAS  Google Scholar 

  13. Hong HQ, Yin HR, Zhu SL, Lin YT. The results of transplant liver from selected non-heartbeating cadaver donors. Hiroshima. J. Med. Sci. 1991; 40: 87–91.

    CAS  Google Scholar 

  14. Peralta C, Hotter G, Closa D, Gelpi E, Bulbena O, Rosello-Catafau J. Protective effect of preconditioning on the injury associated to hepatic ischemia-reperfusion in the rat: role of nitric oxide and adenosine. Hepatology. 1997; 25: 934–937.

    Article  PubMed  CAS  Google Scholar 

  15. Adam R, Reynes M, Johann M, Morino M et al. The outcome of steatotic grafts in liver transplantation. Transplant. Proc. 1991; 23: 1538–1540.

    PubMed  CAS  Google Scholar 

  16. Ploeg RJ, D’Alessandro AM, Knechtle SJ et al. Risk factors for primary dysfunction after liver transplantation. A multivariate analysis. Transplantation. 1993; 55: 807–813.

    CAS  Google Scholar 

  17. Gao W, Connor HD, Lemasters JJ, Mason RP, Thurman RG. Primary nonfunction of fatty livers produced by alcohol is associated with a new antioxidant-insensitive free radical species. Transplantation. 1995; 59: 674–679.

    Article  PubMed  CAS  Google Scholar 

  18. Imamura H, Dagenais M, Giroux L, Brault A, Huet PM. Cold ischemia-reperfusion injury of the liver. Role of the liver donor nutritional status in rats. Transplantation. 1995; 60: 14–19.

    Article  PubMed  CAS  Google Scholar 

  19. Fusaoka T, Hunt KJ, Lemasters JJ, Thurman RG. Evidence that activation of Kupffer cells increases oxygen uptake after cold storage. Transplantation. 1994; 58: 1067–1071.

    PubMed  CAS  Google Scholar 

  20. Sankari HN, Chong A, Foster P et al. Inactivation of Kupffer cells after prolonged donor fasting improves viability of transplanted hepatic allografts. Hepatology. 1995; 22: 1236–1242.

    Article  Google Scholar 

  21. Starzl TE, Demetris AJ, Van Thiel DH. Liver transplantation. N. Engl. J. Med. 1989; 321: 1014.

    Article  PubMed  CAS  Google Scholar 

  22. Morimoto T, Kusumoto K, Isselhard W. Impairment of grafts by short-term warm ischemia in rat liver transplantation. Transplantation. 1991; 52: 424–431.

    Article  PubMed  CAS  Google Scholar 

  23. Harvey PRC, McKeown CNB, Petrunka CN, Ilson RG, Strasberg SM. Adenine nucleotide tissue concentrations and liver allograft viability after cold preservation and warm ischemia. Transplantation. 1988; 45: 1016–1020.

    Article  PubMed  CAS  Google Scholar 

  24. Ikeda T, Yanaga K, Kishikawa K, Kakizoe S, Shimada M, Sugimachi K. Ischemic injury in liver transplantation: difference in injury sites between warm and cold ischemia in rats. Hepatology. 1992; 16: 454–461.

    Article  PubMed  CAS  Google Scholar 

  25. Caldwell-Kenkel JC, Currin RT, Tanaka Y, Thurman RG, Lemasters JJ. Kupffer cell activation and endothelial cell damage after storage of rat livers: effects of reperfusion. Hepatology. 1991; 13: 83–95.

    PubMed  CAS  Google Scholar 

  26. Caries J, Fawaz R, Hamoudi NE, Neaud V, Balabaud C, Bioulac-Sage P. Preservation of human liver grafts in UW solution. Ultrastructural evidence for endothelial and Kupffer cell activation during cold ischemia and after ischemia reperfusion. Liver. 1994; 14: 50–56.

    Google Scholar 

  27. Momii S, Koga A. Time-related morphological changes in cold-stored rat livers. Transplantation. 1990; 50: 745–750.

    Article  PubMed  CAS  Google Scholar 

  28. Kamiike W, Burdelski M, Steinhoff G, Ringe B, Lauchart W, Pichlmayr R. Adenine nucleotide metabolism and its relation to organ viability in human liver transplantation. Transplantation. 1988; 45: 138–143.

    Article  PubMed  CAS  Google Scholar 

  29. Wolf RFE, van der Hoeven JAB, Kamman RL et al. Tissue pH in cold stored human donor livers preserved in University of Wisconsin solution. A noninvasive clinical study with 31P-magnetic resonance spectroscopy. Transplantation. 1996; 61: 66–70.

    Article  PubMed  CAS  Google Scholar 

  30. Bonventre JV, Cheung JY. Effects of metabolic acidosis on viability of cells exposed to anoxia. Am.J. Physiol. 1985; 249: C149–159.

    PubMed  CAS  Google Scholar 

  31. Currin RT, Gores GJ, Thurman RG, Lemasters JJ. Protection by acidotic pH against anoxic cell killing in perfused rat liver: evidence for a pH paradox. FASEB J. 1991; 5: 207–210.

    PubMed  CAS  Google Scholar 

  32. Goldberg M, Zhang HL, Steinberg SF. Hypoxia alters the subcellular distribution of protein kinase C isoforms in neonatal rat ventricular myocytes. J. Clin. Invest. 1997; 99: 55–61.

    Article  PubMed  CAS  Google Scholar 

  33. Southard JH, van Gulik TM, Ametani MS et al. Important components of the UW solution. Transplantation. 1990; 49: 251–257.

    Article  PubMed  CAS  Google Scholar 

  34. Neveux N, De Bandt JP, Charrueau C et al. Deletion of hydroxyethylstarch from University of Wisconsin solution induces cell shrinkage and proteolysis during and after cold storage of rat liver. Hepatology. 1997; 25: 678–682.

    Article  PubMed  CAS  Google Scholar 

  35. Van Belle H. Nucleoside transport inhibition: a therapeutic approach to cardioprotection via adenosine? Cardiovasc. Res. 1993; 27: 68–76.

    Article  PubMed  Google Scholar 

  36. Shibuya H, Ohkohchi N, Seya K, Satomi S. Kupffer cells generate superoxide anions and modulate reperfusion injury in rat livers after cold preservation. Hepatology. 1997; 25: 356–360.

    Article  PubMed  CAS  Google Scholar 

  37. Griffiths M, Beaumont N, Yao SYM et al. Cloning of a human nucleoside transporter implicated in the cellular uptake of adenosine and chemotherapeutic drugs. Nature Med. 1997; 3: 89–93.

    Article  PubMed  CAS  Google Scholar 

  38. Newby AC: Adenosine and the concept of retaliatory metabolites. Trends Biochem. Sci. 1984; 9: 42.

    CAS  Google Scholar 

  39. Forman MB, Velasco CE, Jackson EK. Adenosine attenuates reperfusion injury following regional myocardial ischemia. Cardiovasc.Res. 1993; 27: 9–17.

    Article  PubMed  CAS  Google Scholar 

  40. Cejalvo D, Lloris-Carsi JM, Toledo-Pereyra LH, Calvo MA. Effect of adenosine and allopurinol on liver ischemia-reperfusion. Transplant. Proc. 1993; 25: 3023–3024.

    PubMed  CAS  Google Scholar 

  41. Le Moine O, Stordeur P, Schandené L et al. Adenosine enhances IL-10 secretion by human monocytes. J. Immunol. 1996; 156: 4408–4414.

    PubMed  Google Scholar 

  42. Olsson RA, Pearson JD. Cardiovascular purinoceptors. Physiol. Rev. 1990; 70: 761–845.

    PubMed  CAS  Google Scholar 

  43. Palmer TM, Stiles GL. The new biology of adenosine receptors. Adv. Enzymol. 1994; 69: 83–120.

    PubMed  CAS  Google Scholar 

  44. Collis MG, Hourani SMO. Adenosine receptor subtypes. TIPS. 1993; 14: 360–366.

    PubMed  CAS  Google Scholar 

  45. Matherne GP, Headrick JP, Coleman SD, Berne RM. Interstitial transudate purines in normoxic and hypoxic immature and mature rabbit hearts. Pediatr. Res. 1990; 28: 348–353.

    CAS  Google Scholar 

  46. Parmely MJ, Zhou WW, Edwards CK, Borcherding DR, Silverstein R, Morrison DC. Adenosine and a related carbocyclic nucleoside analogue selectively inhibit tumor necrosis factor-a production and protect mice against endotoxin challenge. J. Immunol. 1993; 151: 389–396.

    PubMed  CAS  Google Scholar 

  47. Todo S, Zhu Y, Zhang S et al. Attenuation of ischemic liver injury by augmentation of endogenous adenosine. Transplantation. 1997; 63: 217–223.

    Article  PubMed  CAS  Google Scholar 

  48. Matherne GP, Linden J, Byford AM, Gauthier NS, Headrick JP. Transgenic Al adenosine receptor overexpression increases myocardial resistance to ischemia. Proc. Natl. Acad. Sci. 1997; 94: 6541–6546.

    Article  PubMed  CAS  Google Scholar 

  49. Nicotera P, Hartzell P, Baldi C, Svensson S, Bellomo G, Orrenius S. Cystamine induces toxicity in hepatocytes through elevation of cytosolic Ca++ and the stimulation of a non-lysosomal proteolytic system. J. Biol. Chem. 1986; 261: 14628–14636.

    PubMed  CAS  Google Scholar 

  50. Ferguson DM, Gores GJ, Bronk SF, Krom RA. An increase in cytosolic protease activity during liver preservation. Inhibition by glutathione and glycine. Transplantation. 1993; 55: 627–633.

    Article  PubMed  CAS  Google Scholar 

  51. Geeraerts MD, Ronveaux-Dupal M, Lemasters JJ, Herman B. Cytosolic free Ca++ and proteolysis in lethal oxidative injury in endothelial cells. Am. J. Physiol. 1991; 30: C889–C896.

    Google Scholar 

  52. Saido TC, Sorimachi H, Suzuki K. Calpain: new perspectives in molecular diversity and physiological-pathological involvement. FASEB J. 1994; 8: 814–822.

    PubMed  CAS  Google Scholar 

  53. Nichols JC, Bronk SF, Mellgren RL, Gores GJ. Inhibition of nonlysosomal calcium-dependent proteolysis by glycine during anoxic injury of rat hepatocytes. Gastroenterology. 1994; 106: 168–176.

    PubMed  CAS  Google Scholar 

  54. Clavien PA, Sanabria JR, Upadhaya P, Harvey PRC, Strasberg SM. Evidence of the existence of a soluble mediator of cold preservation injury. Transplantation. 1993; 56: 44–53.

    Article  PubMed  CAS  Google Scholar 

  55. Calmus Y, Cynober L, Dousset B et al. Evidence for a detrimental role of proteolysis during liver transplantation in humans. Gastroenterology. 1995; 108: 1510–1516.

    Article  PubMed  CAS  Google Scholar 

  56. Upadhya AG, Harvey PRC, Howard TK, Lowell JA, Shenoy S, Strasberg SM. Evidence of a role for matrix metalloproteinases in cold preservation injury of the liver in humans and in the rat. Hepatology. 1997; 26: 927.

    Article  Google Scholar 

  57. Egerson TD, McKelvey TG, Rhyne DB, Boggio EB, Snyder SJ, Jones HP. Conversion of xanthine dehydrogenase to oxidase in ischemic rat tissues. J. Clin. Invest. 1987; 79: 1564–1570.

    Article  Google Scholar 

  58. Wiezorek JS, Brown DH, Kupperman DE, Brass CA. Rapid conversion to high xanthine oxidase activity in viable Kupffer cells during hypoxia. J. Clin. Invest. 1994; 94: 2224–2230.

    Article  PubMed  CAS  Google Scholar 

  59. Caldwell-Kenkel JC, Currin RT, Coote A, Thurman RG, Lemasters JJ. Reperfusion injury to endothelial cells after cold storage of rat livers: protection by mildly acidic pH and lack of protection by antioxidants. Transplant. Int. 1995; 8: 77–85.

    Article  CAS  Google Scholar 

  60. Wang GL, Semenza GL. General involvement of hypoxia-inducible factor-1 in transcriptional response to hypoxia. Proc. Natl. Acad. Sci. 1993; 90: 4304–4308.

    Article  PubMed  CAS  Google Scholar 

  61. Melillo G, Musso T, Sica A, Taylor LS, Cox GW, Varesio L. A hypoxia-responsive element mediates a novel pathway of activation of the inducible nitric oxide synthase promoter. J. Exp. Med. 1995; 182: 1683–1693.

    Article  PubMed  CAS  Google Scholar 

  62. Tacchini L, Radice L, Pogliaghi G, Bernelli-Zazzera A. Differential activation of heat shock and nuclear factor kB transcription factors in postischemic reperfused rat liver. Hepatology. 1997; 26: 186.

    PubMed  CAS  Google Scholar 

  63. Reilly PM, Schiller Hi, Bulkley GB. Pharmacologic approach to tissue injury mediated by free radicals and other reactive oxygen metabolites. Am. J. Surg. 1991; 161: 488–503.

    Article  PubMed  CAS  Google Scholar 

  64. Rosen GM, Pou S, Ramos CL, Cohen MS, Britigan BE. Free radicals and phagocytic cells. FASEB J. 1995; 9: 200–209.

    PubMed  CAS  Google Scholar 

  65. de Groot H. Reactive oxygen species in tissue injury. Hepatoastroenterology. 1994; 41: 328–332.

    Google Scholar 

  66. Schraufstatter IU, Browne K, Harris A et al. Mechanisms of hypochlorite injury of target cells. J. Clin. Invest. 1990; 85: 554–562.

    Article  PubMed  CAS  Google Scholar 

  67. Nakashima I, Pu MY, Nishizaki A et al. Redox mechanism as alternative to ligand binding for receptor activation delivering disregulated cellular signals. J. Immunol. 1994; 152: 1064–1071.

    PubMed  CAS  Google Scholar 

  68. Chaudry G, Clark IA. Reactive oxygen species facilitate the in vitro and in vivo lipopolysaccharide-induced release of tumor necrosis factor. J. Immunol. 1989; 143: 1290–1294.

    Google Scholar 

  69. Peristeris P, Clark BD, Gatti S et al. N-acetylcysteine and glutathione as inhibitors of tumor necrosis factor production. Cell. Immunol. 1992; 140: 390–399.

    Article  PubMed  CAS  Google Scholar 

  70. Koga S, Ogawa S, Kuwabara K et al. Synthesis and release of interleukin 1 by reoxygenated human mononuclear phagocytes. J. Clin. Invest. 1992; 90: 1007–1015.

    Article  PubMed  CAS  Google Scholar 

  71. Maeda Y, Matsumoto M, Hori O et al. Hypoxia/reoxygenation-mediated induction of astrocyte interleukin-6: a paracrine mechanism potentially enhancing neuron survival. J. Exp. Med. 1994; 2297–2308.

    Google Scholar 

  72. DeForge LE, Preston AM, Takeuchi E, Kenney J, Boxer LA, Remick DG: Regulation of interleukin-8 gene expression by oxidant stress. J. Biol. Chem. 1993; 268: 25568–25576.

    PubMed  CAS  Google Scholar 

  73. Jeannin P, Delneste Y, Lecoanet-Henchoz S et al. Thiols decrease human interleukin (IL)-4 production and IL-4-induced immunoglobulin synthesis. J. Exp. Med. 1995; 182: 1785–1792.

    Article  PubMed  CAS  Google Scholar 

  74. Mayer M, Noble M. N-acetyl-L-cysteine is a pluripotent protector against cell death and enhancer of trophic factor-mediated cell survival in vitro. Proc. Natl. Acad. Sci. 1994; 91: 7496–7500.

    Article  PubMed  CAS  Google Scholar 

  75. Golino P, Ragni M, Cirillo P et al. Effects of tissue factor induced by oxygen free radicals on coronary flow during reperfusion. Nature Med. 1996; 35–40.

    Google Scholar 

  76. Schenk H, Vogt M, Droge W, Schultze-Osthoff K. Thioredoxin as a potent costimulus of cytokine expression. J. Immunol. 1996; 156: 765–771.

    PubMed  CAS  Google Scholar 

  77. Meyer M, Schreck R, Baeuerle PA. H202 and anti-oxidants have opposite effects on activation of NF-KB and AP-1 in intact cells: AP-1 as a secondary anti-oxidant responsive factor. EMBO J. 1993; 12: 2005.

    Google Scholar 

  78. Granger DN, Rutili G, McCord JM. Superoxide radicals in feline intestinal ischemia. Gastroenterology. 1981; 81: 22–29.

    PubMed  CAS  Google Scholar 

  79. Nordstrom G, Seeman T, Hasselgren PO. Beneficial effect of allopurinol in liver ischemia. Surgery. 1985; 97: 679–683.

    PubMed  CAS  Google Scholar 

  80. Adkinson D, Hollwarth ME, Benoit JM, Parks DA, McCord JM, Granger DN. Role of free radicals in ischemia reperfusion injury to the liver. Acta Physiol. Scand. 1986; S548: 101–107.

    Google Scholar 

  81. Marubayashi S, Dohi K, Ochi K, Kawasaki T. Role of free radicals in ischemic rat liver cell injury: prevention of damage by a-tocopherol administration. Surgery. 1986; 99: 184–192.

    PubMed  CAS  Google Scholar 

  82. Okuda M, Ikai I, Chance B, Kumar C. Oxygen radical production during ischemia-reperfusion in the isolated perfused rat liver as monitored by luminol enhanced chemiluminescence. Biochem. Biophys. Res. Commun. 1991; 174: 217–221.

    CAS  Google Scholar 

  83. Nunes FA, Kumar C, Chance B, Brass CA. Chemiluminescent measurement of increased free radical formation after ischemia/reperfusion. Dig. Dis. Sci. 1995; 40: 1045–1053.

    Article  PubMed  CAS  Google Scholar 

  84. Jaeschke H, Farhood A. Neutrophil and Kupffer cell-induced oxidant stress and ischemia reperfusion injury in rat liver. Am. J. Physiol. 1991; 260: G355–G362.

    PubMed  CAS  Google Scholar 

  85. Rymsa B, Wang JF, de Groot H. 02 release by activated Kupffer cells upon hypoxia-reoxygenation. Am. J. Physiol. 1991; 261: G602–G607.

    PubMed  CAS  Google Scholar 

  86. Yokoyama Y, Beckman JS, Beckman TK et al. Circulating xanthine oxidase: potential mediator of ischemic injury. Am. J. Physiol. 1990; 258: G564–G570.

    PubMed  CAS  Google Scholar 

  87. Bzeizi KI, Dawkes R, Dodd NJF, Plevris JN, Hayes PC. Graft dysfunction following liver transplantation: role of free radicals. J. Hepatol. 1997; 26: 69–74.

    Article  PubMed  CAS  Google Scholar 

  88. Brass CA, Roberts TG. Hepatic free radical production after cold storage: evidence for Kupffer cell dependent and independent mechanisms. Gastroenterology. 1995; 108: 1167–1175.

    Article  PubMed  CAS  Google Scholar 

  89. Angermuller S, Schunk M, Kusterer K. Alteration of xanthine oxidase activity in sinusoidal endothelial cells and morphological changes of Kupffer cells in hypoxic and reoxygenated rat liver. Hepatology. 1995; 21: 1594–1601.

    PubMed  CAS  Google Scholar 

  90. Jaeschke H, Farhood A, Bautista AP, Spolaricz Z, Spitzer JJ, Smith CW. Functional inactivation of neutrophils with a Mac-1 (CD11b/CD18) monoclonal antibody protects against ischemia-reperfusion injury in the rat liver. Hepatology. 1993; 17: 915–923.

    Article  PubMed  CAS  Google Scholar 

  91. Jaeschke H, Farhood A, Smith CW. Neutrophils contribute to ischemia-reperfusion injury in rat liver in vivo. FASEB J. 1990; 4: 3355–3359.

    PubMed  CAS  Google Scholar 

  92. Brass CA, Nunes FA, Nagpal R. Increased oxyradical production during reoxygenation of perfused rat liver. Signal versus injury. Transplantation. 1994; 58: 1329–1335.

    PubMed  CAS  Google Scholar 

  93. Pruzanski W, Vadas P. Phospholipase A2 a mediator between proximal and distal effectors of inflammation. Immunol. Today. 1991; 12: 143–146.

    PubMed  CAS  Google Scholar 

  94. Hanahan DJ. Platelet activating factor: a biologically active phosphoglyceride. Annu. Rev. Biochem. 1986; 55: 483–509.

    Article  PubMed  CAS  Google Scholar 

  95. Post S, Goerig M, Otto G, Manner M, Senninger N, Kommerel B, Herfarth C. Prostanoid release in experimental liver transplantation. Transplantation. 1990; 49: 490–494.

    Article  PubMed  CAS  Google Scholar 

  96. Klausner JM, Paterson IS, Goldman G et al. Postischemic renal injury is mediated by neutrophils and leukotrienes. Am. J. Physiol. 1989; 256: F794–F802.

    PubMed  CAS  Google Scholar 

  97. Zhou W, McCollum MO, Levine BA, Olson MS. Inflammation and platelet-activating factor production during hepatic ischemia/reperfusion. Hepatology. 1992; 16: 1236–1240.

    Article  PubMed  CAS  Google Scholar 

  98. Takada Y, Boudjema K, Jaeck D et al. Effects of platelet-activating factor antagonist on preservation/reperfusion injury of the graft in porcine orthotopic liver transplantation. Transplantation. 1995; 59: 10–16.

    Article  PubMed  CAS  Google Scholar 

  99. Ishiguro S, Arii S, Monden K et al. Involvement of thromboxane A2-thromboxane A2 receptor system of the hepatic sinusoid in pathogenesis of cold preservation/reperfusion injury in the rat liver graft. Transplantation. 1995; 59: 957–961.

    Article  PubMed  CAS  Google Scholar 

  100. Lehr HA, Gulmann A, Nolte D, Keppler D, Messmer K. Leukotrienes as mediators in ischemia-reperfusion injury in a microcirculation model in the hamster. J. Clin. Invest. 1991; 87: 2036–2041.

    Article  PubMed  CAS  Google Scholar 

  101. Roth M, Nauck M, Yousefi S et al. Platelet-activating factor exerts mitogenic activity and stimulates expression of interleukin-6 and interleukin-8 in human lung fibroblasts via binding to its functional receptor. J. Exp. Med. 1996; 184: 191–201.

    Article  PubMed  CAS  Google Scholar 

  102. Serizawa A, Nakamura S, Suzuki S, Baba S, Nakano M. Involvement of platelet-activating factor in cytokine production and neutrophil activation after hepatic ischemia-reperfusion. Hepatology. 1996; 23: 1656–1663.

    Article  PubMed  CAS  Google Scholar 

  103. Araki H, Lefer AM. Cytoprotective actions of prostacyclin during hypoxia in the isolated perfused cat liver. Am. J. Physiol. 1980; 238: H176–H181.

    PubMed  CAS  Google Scholar 

  104. Lim SP, Andrews FJ, Christophi C, O’Brien PE. Microvascular changes in liver after ischemiareperfusion injury. Protection with misoprostol. Dig. Dis. Sci. 1994; 39: 1683–1690.

    Article  PubMed  CAS  Google Scholar 

  105. Coletti LM, Remick DG, Burtch GD, Kunkel SL, Strieter RM, Campbell JDA. Role of tumor necrosis factor-a in the pathophysiologic alterations after hepatic ischemia/reperfusion injury in the rat. J. Clin. Invest. 1990; 85: 1936–1943.

    Article  Google Scholar 

  106. Coletti LM, Burtch GD, Remick DG et al. The production of tumor necrosis factor alpha and the development of a pulmonary capillary injury following hepatic ischemia reperfusion. Transplantation. 1990; 49: 268–272.

    Article  Google Scholar 

  107. Goto M, Takey Y, Kawano S et al. Tumor necrosis factor and endotoxin in the pathogenesis of liver and pulmonary injuries after orthotopic liver transplantation in the rat. Hepatology. 1992; 16: 487–493.

    Article  PubMed  CAS  Google Scholar 

  108. Fugger R, Hamilton G, Steininger R, Mirza D, Schulz F, Muhlbacher F: Intraoperative estimation of endotoxin, TNFa, and IL-6 in orthotopic liver transplantation and their relation to rejection and postoperative infection. Transplantation. 1991; 52: 302–306.

    Article  PubMed  CAS  Google Scholar 

  109. Chazouillères O, Guéchot J, Balladur P et al. Tumor necrosis factor-a in liver transplantation and resection. No evidence for a key role in ischemia-reperfusion injury. J. Hepatol. 1992; 16: 376–379.

    Article  PubMed  Google Scholar 

  110. Steininger R, Roth E, Fugger R et al. Transhepatic metabolism of TNF-a, IL-6, and endotoxin in the early hepatic reperfusion period after human liver transplantation. Transplantation. 1994; 58: 179–182.

    PubMed  CAS  Google Scholar 

  111. Sekido N, Mukaida N, Harada A, Nakanishi I, Watanabe Y, Matsushima K. Prevention of lung reperfusion injury in rabbits by a monoclonal antibody against interleukin-8. Nature. 1993; 365: 654–657.

    Article  PubMed  CAS  Google Scholar 

  112. Coletti LM, Kunkel SL, Walz A et al. The role of cytokine networks in the local liver injury following hepatic ischemia/reperfusion in the rat. Hepatology. 1996; 23: 506–514.

    Article  Google Scholar 

  113. Le Moine O, Marchant A, Durand F et al. Systemic release of interleukin-10 during orthotopic liver transplantation. Hepatology 1994; 20: 889–892.

    Article  PubMed  Google Scholar 

  114. Arii S, Monden K, Adachi Y et al. Pathogenic role of Kupffer cell activation in the reperfusion injury of cold-preserved liver. Transplantation. 1994; 58: 1072–1077.

    PubMed  CAS  Google Scholar 

  115. Hisama N, Yamaguchi Y, Ishiko T et al. Kupffer cell production of cytokine-induced neutrophil chemoattractant following ischemia/reperfusion injury in rats. Hepatology. 1996; 24: 1193–1198.

    Article  PubMed  CAS  Google Scholar 

  116. Shiratori Y, Takada H, Hikiba Y et al. Production of chemotactic factor, interleukin-8, from hepatocytes exposed to ethanol. Hepatology. 1993; 18: 1477–1482.

    Article  PubMed  CAS  Google Scholar 

  117. Gonzalez-Amaro R, Garcia-Monzon C, Garcia-Buey L et al. Induction of tumor necrosis factor-a production by human hepatocytes in chronic viral hepatitis. J. Exp. Med. 1994; 179: 841–848.

    Article  PubMed  CAS  Google Scholar 

  118. Hamilton G, Tüchy G, Hamilton B. Intraoperative kinetics and regional distribution of interleukin-6 during human liver transplantation. Transplantation. 1992; 54: 746–748.

    Article  PubMed  CAS  Google Scholar 

  119. Yokoyama I, Todo S, Miyata T, Selby R, Tsakis AG, Starzl TE. Endotoxemia and human liver transplantation. Transplant. Proc. 1989; 21: 3833–3841.

    PubMed  CAS  Google Scholar 

  120. Blanot S, Gillon MC, Ecoffey C, Lopez I. Circulating endotoxins during orthotopic liver transplantation and post-reperfusion syndrome. Lancet. 1993; 342: 859–860.

    Article  PubMed  CAS  Google Scholar 

  121. Le Moine O, Louis H, Stordeur P, Collet JM, Goldman M, Devière J. Role of reactive oxygen intermediates in interleukin-10 release after cold liver ischemia and reperfusion in mice. Gastroenterology. 1997; 113: 1701–1706.

    Article  PubMed  Google Scholar 

  122. Eppinger MJ, Ward PA, Bolling SF, Deeb GM. Regulatory effects of interleukin-10 on lung ischemia-reperfusion injury. J Thorac Cardiovasc Surg 1996; 112: 1301–1306.

    Article  PubMed  CAS  Google Scholar 

  123. Hess PJ, Seeger JM, Huber TS et al. Exogenously administered interleukin-10 decreases pulmonary neutrophil infiltration in a tumor necrosis factor-dependent murine model of acute visceral ischemia. J. Vase. Surg. 1997; 26: 113–118.

    Article  CAS  Google Scholar 

  124. Engles RE, Huber TS, Zander DS et al. Exogenous human recombinant interleukin-10 attenuates hindlimb ischemia-reperfusion injury. J. Surg. Res. 1997; 69: 425–428.

    Article  PubMed  CAS  Google Scholar 

  125. Willems F, Marchant A, Delville JP et al. Interleukin-10 inhibits B7 and intercellular adhesion molecule-1 expression on human monocytes. Eur. J. Immunol. 1994; 24: 1007–1009.

    Article  PubMed  CAS  Google Scholar 

  126. Zuany-Amorim C, Halle S, Leduc D et al. Interleukin-10 inhibits antigen-induced cellular recruitment into the airways of sensitized mice. J. Clin. Invest. 1995; 95: 2644–2651.

    Article  PubMed  CAS  Google Scholar 

  127. Santucci L, Fiorucci S, Chiorean M et al. Interleukin-10 reduces lethality and hepatic injury induced by lipopolysaccharide in galactosamine-sensitized mice. Gastroenterology. 1996; 111: 736–744.

    Article  PubMed  CAS  Google Scholar 

  128. Kuga S, Otsuka T, Niiro H, Nunoi H et al. Suppression of superoxide anion production by interleukin-10 is accompanied by a downregulation of the genes for subunit proteins of NADPH oxidase. Exp. Hematol. 1996; 24: 151–157.

    PubMed  CAS  Google Scholar 

  129. Bussolati B, Mariano F, Montrucchio G, Piccoli G, Camussi G. Modulatory effect of interleukin-10 on the production of platelet-activating factor and superoxide anions by human monocytes. Immunology. 1997; 90: 440–447.

    Article  PubMed  CAS  Google Scholar 

  130. Pradier O, Gérard C, Delvaux A et al. Interleukin-l0 inhibits the induction of monocyte procoagulant activity by bacterial lipopolysaccharide. Eur. J. Immunol. 1993; 23: 2700–2703.

    Article  PubMed  CAS  Google Scholar 

  131. Vedder NB, Winn RK, Rice CL, Chi EY, Arfors KE, Harlan JM. Inhibition of leukocyte adherence by anti-CD18 monoclonal antibody attenuates reperfusion injury in the rabbit ear. Proc. Natl. Acad. Sci. 1990; 87: 2643–2646.

    Article  PubMed  CAS  Google Scholar 

  132. Seekamp A, Mulligan MS, Till GO et al. Role of ß2 integrins and ICAM-1 in lung injury following ischemia-reperfusion of rat hind limbs. Am. J. Pathol. 1993; 143: 464–472.

    PubMed  CAS  Google Scholar 

  133. Kukielka GL, Hawkins HK, Michael LH et al. Regulation of intercellular adhesion molecule-1 (ICAM-1) in ischemic and reperfused canine myocardium. J. Clin. Invest. 1993; 92: 1504–1516.

    Article  PubMed  CAS  Google Scholar 

  134. Nishimura Y, Takey Y, Kawano S et al. The F(ab)2 fragment of an anti-ICAM-i monoclonal antibody attenuates liver injury after orthotopic liver transplantation. Transplantation. 1996; 61: 99–104.

    Article  PubMed  CAS  Google Scholar 

  135. Nakano H, Nagasaki H, Barama A et al. The effects of N-acetylcysteine and anti-intercellular adhesion molecule-1 monoclonal antibody against ischemia-reperfusion injury of the rat steatotic liver produced by a choline-methionine-deficient diet. Hepatology. 1997; 26: 670.

    PubMed  CAS  Google Scholar 

  136. Weyrich AS, Ma XL, Lefer DJ, Albertine KH, Lefer AM. In vivo neutralization of P-selectin protects feline heart and endothelium in myocardial ischemia and reperfusion injury. J. Clin. Invest. 1993; 91: 2620–2629.

    Article  PubMed  CAS  Google Scholar 

  137. Mulligan MS, Paulso JC, De Frees S, Zheng ZL, Lowe JB, Wang PA. Protective effects of oligosaccharides in P-selectin-dependent lung injury. Nature. 1993; 364: 149–151.

    Article  PubMed  CAS  Google Scholar 

  138. Luscinskas FW, Ding H, Lichtman AH. P-selectin and vascular cell adhesion molecule-1 mediate rolling and arrest, respectively, of CD4 T lymphocytes on tumor necrosis factor-a activated vascular endothelium under flow. J. Exp. Med. 1995; 181: 1179–1186.

    Article  PubMed  CAS  Google Scholar 

  139. Garcia Criado FJ, Palma Vargas JM, Valdunciel Garcia JJ et al. Sulfo-Lewis(x) diminishes neutrophil infiltration and free radicals with minimal effect on serum cytokines after liver ischemia and reperfusion. J. Surg. Res. 1997; 70: 187–194.

    Article  Google Scholar 

  140. Mihelcic D, Schleiffenbaum B, Tedder TF, Sharar SR, Harlan JM, Winn RK. Inhibition of leukocyte t.-selectin function with a monoclonal antibody attenuates reperfusion injury to the rabbit ear. Blood. 1994; 84: 2322–2328.

    PubMed  CAS  Google Scholar 

  141. Jaeschke H. Cellular adhesion molecules: regulation and functional significance in the pathogenesis of liver diseases. Am. J. Physiol. 1997; 273: G602–G611.

    PubMed  CAS  Google Scholar 

  142. Zwacka RM, Zhang Y, Halidorson J, Schlossberg H, Dudus L, Engelhardt JF. CD4 T-lymphocytes mediate ischemia/reperfusion-induced inflammatory responses in mouse liver. J. Clin. Invest. 1997; 100: 279–289.

    Article  PubMed  CAS  Google Scholar 

  143. Takada M, Chandraker A, Nadeau KC, Sayegh MH, Tilney NL. The role of the B7 costimulatory pathway in experimental cold ischemia/reperfusion injury. J. Clin. Invest. 1997; 100: 1199–1203.

    Article  PubMed  CAS  Google Scholar 

  144. Kurokawa T, Kobayashi H, Nonami T et al. Beneficial effects of cyclosporine on postischemic liver injury in rats. Transplantation. 1992; 53: 308–311.

    Article  PubMed  CAS  Google Scholar 

  145. Kawano K, Kim YI, Ono M, Goto S, Kai T, Kobayashi M. Evidence that both cyclosporine and azathioprine prevent warm ischemia reperfusion injury to the rat liver. Transplant. Int. 1993; 6: 330–336.

    Article  CAS  Google Scholar 

  146. Suzuki S, Toledo Pereyra LH, Rodriguez FJ, Cejalvo D. Neutrophil infiltration as an important factor in liver ischemia and reperfusion injury. Modulating effects of FK506 and cyclosporine. Transplantation. 1993; 55: 1265–1272.

    Article  PubMed  CAS  Google Scholar 

  147. Carr MW, Roth SJ, Luther E, Rose SS, Springer TA. Monocyte chemoattractant protein 1 acts as a T-lymphocyte chemoattractant. Proc. Natl. Acad. Sci. 1994; 91: 3652–3656.

    Article  PubMed  CAS  Google Scholar 

  148. Grisham MB, Hernandez LA, Granger DN. Xanthine oxidase and neutrophil infiltration in intestinal ischemia. Am. J. Physiol. 1986; 251: G567–G574.

    PubMed  CAS  Google Scholar 

  149. Granger DN, Benoit JM, Suzuki M, Grisham MB. Leukocyte adherence to venular endothelium during ischemia-reperfusion. Am. J. Physiol. 1989; 257: G683–G688.

    PubMed  CAS  Google Scholar 

  150. Takey Y, Marzi I, Gao W, Gores GJ, Lemasters JJ, Thurman RG. Leukocyte adhesion and cell death following orthotopic liver transplantation in the rat. Transplantation. 1991; 51: 959–965.

    Article  Google Scholar 

  151. Marzi I, Knee J, Buhren V, Menger M, Trentz O. Reduction by superoxide dismutase of leukocyte-endothelial adherence after liver transplantation. Surgery. 1992; 111: 90–97.

    PubMed  CAS  Google Scholar 

  152. Morita Y, Clemens MG, Miller LS et al. Reactive oxidants mediate TNF-a-induced leukocyte adhesion to rat mesenteric venular endothelium. Am. J. Physiol. 1995; 269: H1833–H1842.

    PubMed  CAS  Google Scholar 

  153. Jaeschke H, Farhood A, Bautista AP, Spolaricz Z, Spitzer JJ. Complement activates Kupffer cells and neutrophils during reperfusion after hepatic ischemia. Am. J. Physiol. 1993; 264: G801–G809.

    PubMed  CAS  Google Scholar 

  154. Chavez-Cartaya RE, Pino-DeSola G, Wright L, Jamieson NV, White DJG. Regulation of the complement cascade by soluble complement receptor type 1. Protective effect in experimental liver ischemia and reperfusion. Transplantation. 1995; 59: 1047–1052.

    Article  PubMed  CAS  Google Scholar 

  155. Weiser MR, Williams JP, Moore JFD et al. Reperfusion injury of ischemic skeletal muscle is mediated by natural antibody and complement. J. Exp. Med. 1996; 183: 2343–2348.

    Article  PubMed  CAS  Google Scholar 

  156. Scoazec JY, Delautier D, Moreau A et al. Expression of complement regulatory proteins in normal and UW-preserved human liver. Gastroenterology. 1994; 107: 505–516.

    PubMed  CAS  Google Scholar 

  157. Koo A, Komatsu H, Tao G, Inoue M, Guth PH, Kaplowitz N. Contribution of no-reflow phenomenon to hepatic injury after ischemia-reperfusion: evidence for a role for superoxide anion. Hepatology. 1991; 15: 507–514.

    Article  Google Scholar 

  158. Kourembanas S, Marsden P, McQuillan LP, Faller DV. Hypoxia induces endothelin gene expression and secretion in cultured human endothelium. J. Clin. Invest. 1991; 88: 1054–1057.

    Article  PubMed  CAS  Google Scholar 

  159. Stansby G, Fuller B, Jeremy J, Cheetham K, Rolles K. Endothelin release - a facet of reperfusion injury in clinical liver transplantation? Transplantation. 1993; 56: 239–240.

    Article  PubMed  CAS  Google Scholar 

  160. Goto M, Takey Y, Kawano Set al. Endothelin-1 is involved in the pathogenesis of ischemiareperfusion injury by hepatic microcirculatory disturbances. Hepatology. 1994; 19: 675–681.

    Article  PubMed  CAS  Google Scholar 

  161. Kawamura E, Yamanaka N, Okamoto E, Tomoda F, Furukawa K. Response of plasma and tissue endothelin-1 to liver ischemia and its implication in ischemia-reperfusion injury. Hepatology. 1995; 21: 1138–1143.

    Article  PubMed  CAS  Google Scholar 

  162. Bautista AP, Spitzer JJ. Inhibition of nitric oxide formation in vivo enhances superoxide release by the perfused liver. Am. J. Physiol. 1994; 266: G783–G788.

    PubMed  CAS  Google Scholar 

  163. Kobayashi H, Nonami T, Kurokawa T et al. Role of endogenous nitric oxide in ischemiareperfusion injury in rat liver. J. Surg. Res. 1995; 59: 772–779.

    Article  PubMed  CAS  Google Scholar 

  164. Ma TT, Ischiropoulos H, Brass CA. Endotoxin-stimulated nitric oxide production increases injury and reduces rat liver chemiluminescence during reperfusion. Gastroenterology. 1995; 108: 463–469.

    Article  PubMed  CAS  Google Scholar 

  165. Cronstein BN, Kramer SB, Weismann G, Hirschorn R. Adenosine: a physiological modulator of superoxide anion generation by human neutrophils. J. Exp. Med. 1983; 158: 1160–1177.

    Article  PubMed  CAS  Google Scholar 

  166. Cronstein BN, Levin RI, Belanoff J, Weismann G, Hirschorn R. Adenosine: an endogenous inhibitor of neutrophil-mediated injury to endothelial cells. J. Clin. Invest. 1986; 78: 760–770.

    Article  PubMed  CAS  Google Scholar 

  167. Felsh A, Stocker K, Borchard U. Phorbol ester-stimulated adherence of neutrophils to endothelial cells is reduced by adenosine A2 receptor agonists. J. Immunol. 1995; 155: 333–338.

    Google Scholar 

  168. Richardt G, Waas W, Kranzhomig R, Mayer E, Schomig A. Adenosine inhibits exocytotic release release of endogenous noradrenalin in rat heart: a protective mechanism in early myocardial ischemia. Circ. Res. 1987; 61: 117–123.

    Article  PubMed  CAS  Google Scholar 

  169. Tanabe M, Terashita Z, Nishikawa K, Hirita M. Inhibition of coronary circulatory failure and thromboxane-A2 release during coronary occlusion and reperfusion. J. Cardiovasc. Pharmacol. 1984; 6: 442–448.

    Article  PubMed  CAS  Google Scholar 

  170. Fredholm BB. Methods used to study the involvement of adenosine in the regulation of lipolysis; in Paton DM (ed): 1985, pp 337–357.

    Google Scholar 

  171. Gross GJ, Auchampach JA. Blockade of ATP-sensitive potassium channels prevents myocardial preconditioning in dogs. Circ. Res. 1992; 70: 223–233.

    Article  PubMed  CAS  Google Scholar 

  172. Li JM, Fenton RA, Cutler BS, Dobson JG. Adenosine enhances nitric oxide production by vascular endothelial cells. Am. J. Physiol. 1995; 269: C519–0523.

    PubMed  CAS  Google Scholar 

  173. Jurgensen CH, Hubert BE, Zimmerman TP, Wolberg G. 3-Deazaadenosine inhibits leukocyte adhesion and ICAM-1 biosynthesis in tumor necrosis factor-stimulated human endothelial cells. J. Immunol. 1990; 144: 653–661.

    PubMed  CAS  Google Scholar 

  174. Bouma MG, van den Wildenberg FA, Buurman WA. Adenosine inhibits cytokine release and expression of adhesion molecules by activated human endothelial cells. Am. J. Physiol. 1996; 270: C522–B529.

    PubMed  CAS  Google Scholar 

  175. Le Vraux V, Chen, Masson I et al. Inhibition of human monocyte TNF production by adenosine receptor agonists. Life Sci. 1993; 52: 1917–1924.

    Article  PubMed  Google Scholar 

  176. Sajjadi FG, Takabayashi K, Foster AC, Domingo RC, Firenstein GS. Inhibition of TNF-/ expression by adenosine. Role of A3 adenosine receptors. J. Immunol. 1996; 156: 3435–3442.

    PubMed  CAS  Google Scholar 

  177. Bouma MG, Stad RK, van den Wildenberg FA, Buurman WA. Differential regulatory effects of adenosine on cytokine release by activated human monocytes. J. Immunol. 1994; 153: 4159–4168.

    PubMed  CAS  Google Scholar 

  178. Reinstein LJ, Lichtman SN, Currin RT, Wang J, Thurman RG, Lemasters JJ. Suppression of lipopolysaccharide-stimulated release of tumor necrosis factor by adenosine: evidence for A2 receptors on rat Kupffer cells. Hepatology. 1994; 19: 1445–1452.

    PubMed  CAS  Google Scholar 

  179. Goldberg NA, Dunning SP, Bunn HF. Regulation of the erythropoietin gene: evidence that the oxygen sensor is a heme protein. Science. 1988; 242: 1412–1415.

    Article  PubMed  CAS  Google Scholar 

  180. Kourembanas S, Hannan RL, Faller DV. Oxygen tension regulates the expression of the platelet-derived growth factor-ß chain gene in human endothelial cells. J. Clin. Invest. 1990; 86: 670–674.

    Article  PubMed  CAS  Google Scholar 

  181. Ogawa S, Gerlach H, Esposito C, Pasagian-Macaulay, Brett J, Stern D. Hypoxia modulates the barrier and coagulant function of cultured bovine endothelium: increased monolayer permeability and induction of procoagulant properties. J. Clin. Invest. 1990; 85: 1090–1098.

    Article  PubMed  CAS  Google Scholar 

  182. Shreeniwas R, Koga S, Karakurum M et al. Hypoxia mediated induction of endothelial cell interleukin la: an autocrine mechanism promoting expression of leukocyte adhesion molecules on the vessel surface. J. Clin. Invest. 1992; 90: 2333–2339.

    Article  PubMed  CAS  Google Scholar 

  183. Ertel W, Morrison MH, Ayala A, Chaudry IH. Hypoxemia in the absence of blood loss or significant hypotension causes inflammatory cytokine release. Am. J. Physiol. 1995; 269: R160–R166.

    PubMed  CAS  Google Scholar 

  184. Metinko AP, Kunkel SL, Standiford TJ, Strieter RM. Anoxia-hyperoxia induces monocyte-derived interleukin-8. J. Clin. Invest. 1992; 90: 791–798.

    Article  PubMed  CAS  Google Scholar 

  185. Karakurum M, Shreeniwas R, Chen J,et al. Hypoxic induction of interleukin-8 gene expression in human endothelial cells. J. Clin. Invest. 1994; 93: 1564–1570.

    Article  PubMed  CAS  Google Scholar 

  186. Scannel G, Waxman K, Kaml GJ et al. Hypoxia induces a human macrophage cell line to release tumor necrosis-2 and its soluble receptors in vitro. J. Surg. Res. 1993; 54: 281–285.

    Article  Google Scholar 

  187. Patel KD, Zimmerman GA, Prescott SM, McEver RP, McIntyre TM. Oxygen radicals induce human endothelial cells to express GMP-140 and bind neutrophils. J. Cell. Biol. 1991; 112: 749–759.

    Article  PubMed  CAS  Google Scholar 

  188. Lo SK, Janakidevi K, Lai L, Malik AB. Hydrogen peroxide-induced increase in endothelial adhesiveness is dependent on ICAM-1 activation. Am. J. Physiol. 1993; 264: L406–L412.

    PubMed  CAS  Google Scholar 

  189. Marui N, Offerman MK, Swerlick R et al. Vascular cell adhesion molecule-1 (VCAM-1) gene transcription and expression are regulated through an antioxidant-sensitive mechanism in human vascular endothelial cells. J. Clin. Invest. 1993; 92: 1866–1874.

    Article  PubMed  CAS  Google Scholar 

  190. Lewis MS, Whatley RE, Cain P, McIntyre TM, Prescott SM, Zimmerman GA. Hydrogen peroxide stimulates the synthesis of platelet-activating factor by endothelium and induces endothelial cell-dependent neutrophil adhesion. J. Clin. Invest. 1988; 82: 2045–2055.

    Article  PubMed  CAS  Google Scholar 

  191. Zimmerman BJ, Guillory DJ, Grisham MB, Gaginella TS, Granger DN. Role of leukotrien B4 in the granulocyte infiltration into the postischemic feline intestine. Gastroenterology. 1990; 99: 1358.

    PubMed  CAS  Google Scholar 

  192. Otamiri T, Lindhal M, Tagesson C. Phospholipase A2 inhibition prevents mucosal damage associated with small intestinal ischemia in rats. Gut. 1988; 29: 489.

    Article  PubMed  CAS  Google Scholar 

  193. Komatsu H, Koo A, Ghadishah E et al. Neutrophil accumulation in ischemic reperfused rat liver: evidence for a role for superoxide free radicals. Am. J. Physiol. 1992; 262: G669–G676.

    PubMed  CAS  Google Scholar 

  194. Clavien PA, Harvey PRC, Sanabria JR, Cywes R, Levy GA, Strasberg SM. Lymphocyte adherence in the reperfused rat liver: mechanisms and effects. Hepatology. 1993; 17: 131–142.

    Article  PubMed  CAS  Google Scholar 

  195. Los M, Droge W, Stricker K, Baeuerle PA, Schultze-Osthoff K. Hydrogen peroxide as a potent activator of T lymphocyte functions. Eur. J. Immunol. 1995; 25: 159–165.

    Article  PubMed  CAS  Google Scholar 

  196. Gossart S, Cambon C, Orfila C et al. Reactive oxygen intermediates as regulators of TNF-2 production in rat lung inflammation induced by silica. J. Immunol. 1996; 156: 1540–1548.

    PubMed  CAS  Google Scholar 

  197. Schreck R, Rieber P, Baeuerle PA. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-KB transcription factor and HIV-1. EMBO J. 1991; 10: 2247–2258.

    PubMed  CAS  Google Scholar 

  198. Huot J, Lambert H, Lavoie JN, Guimond A, Houle F, Landry J. Characterization of 45-kDa/54-kDa HSP27 kinase, a stress-sensitive kinase which may activate the phosphorylation dependent protective function of mammalian 27-kDa heat-shock protein HSP27. Eur. J. Biochem. 1995; 227: 416–427.

    Article  PubMed  CAS  Google Scholar 

  199. Bernelli-Zazzera A, Cairo G, Schiaffonati L, Tacchini L. Stress proteins and reperfusion stress in the liver. Ann. NY Acad. Sci. 1992; 663: 120–124.

    Article  PubMed  CAS  Google Scholar 

  200. Buttke TM, Sandstrom PA. Oxidative stress as a mediator of apoptosis. Immunol. Today. 1994; 15: 7–10.

    Article  PubMed  CAS  Google Scholar 

  201. Sundaresan M, Yu ZX, Ferrans VJ, Irani K, Finkel T. Requirement for generation of H202 for platelet-derived growth factor signal transduction. Science. 1995; 270: 296–299.

    Article  PubMed  CAS  Google Scholar 

  202. Firenstein GS, Boyle D, Bullough DA et al. Protective effect of an adenosine kinase inhibitor in septic shock. J. Immunol. 1994; 152: 5853–5859.

    Google Scholar 

Download references

Authors

Editor information

J. L. Touraine J. Traeger H. Bétuel J. M. Dubernard J. P. Revillard C. Dupuy

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Le Moine, O., Deviere, J., Goldman, M. (1998). The inflammatory cascade of liver ischemia and reperfusion: from the donor to the recipient. In: Touraine, J.L., Traeger, J., Bétuel, H., Dubernard, J.M., Revillard, J.P., Dupuy, C. (eds) Organ Allocation. Transplantation and Clinical Immunology, vol 30. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4984-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4984-6_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6091-2

  • Online ISBN: 978-94-011-4984-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics