Skip to main content

NO and diabetic complications

  • Chapter
Diabetic Renal-Retinal Syndrome
  • 89 Accesses

Abstract

Furchgott’s epochal discovery in 1980 of endothelium-dependent relaxation of arteries by acetylcholine led to identification of a labile material released by endothelial cells first termed endothelium-derived relaxing factor and later shown to be nitric oxide (NO). NO is now recognized as a key mediator in multiple physiologic processes that are perturbed in diabetes. In induced diabetes in the rat, for example, the hypotensive response to acetylcholine infusion is sharply attenuated, perhaps due to the action of advanced glycosylated endproducts. Another illustration of impaired NO effect in diabetes is the finding that penile corpora cavernosa obtained from impotent diabetic men show total absence of relaxation on exposure to acetylcholine. While an exact role for NO in the pathogenesis of diabetic complications has yet to be defined, there is no doubt that it will. Therapeutic initiatives to restore normal NO equilibrium are rational objectives once the pathophysiology of diabetes is elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980; 288: 373–376.

    Article  PubMed  CAS  Google Scholar 

  2. Furchgott RF. Role of endothelium in the responses of vascular smooth muscle. Circ Res 1983;53: 557–573.

    Article  PubMed  CAS  Google Scholar 

  3. Holtz J, Forstermann U, Pohl U, Giesler M, Bassenge E. Flow-dependent, endothelium-mediated dilation of epicardial coronary arteries in conscious dogs: effects of cycloxygenase inhibition. J Cardiovasc Pharmacol 1984; 6: 1161–1169.

    PubMed  CAS  Google Scholar 

  4. Rubanyi GM, Romero JC, Vanhoutte PM. Flow-induced release of endothelium-derived relaxing factor. Am J Physiol 1986; 250: H1145–H1149.

    PubMed  CAS  Google Scholar 

  5. Holzmann S. Endothelium-induced relaxation by acetylcholine associated with larger rises in cyclic GMP in coronary arterial strips. J Cyclic Nucleotide Res 1982; 8: 409–419.

    PubMed  CAS  Google Scholar 

  6. Rapoport RM, Murad F. Agonist-induced endothelium-dependent relaxations in rat thoracic aorta may be mediated by cyclic GMP. Circ Res 1983; 52: 352–357.

    Article  PubMed  CAS  Google Scholar 

  7. Diamond J, Chu EB. Possible role of cyclic GMP in endothelium-dependent relaxation of rabbit aorta by acetylcholine. Res Comm Chem Pathol Pharmacol 1983; 41: 369–381.

    CAS  Google Scholar 

  8. Furchgott RF. Studies on relaxation of rabbit aorta by sodium nitrite: the basis for the proposal that the acid-activatable inhibitory factor from retractor penis is inorganic nitrite and the endothelium-derived relaxing factor is nitric oxide. In: Vanhoutte PM (ed.), Vasodilatation: Vascular Smooth Muscle, Peptides, and Endothelium. New York: Raven Press, 1988: 401–414.

    Google Scholar 

  9. Ignarro LJ, Byrns RE, Wood KS. Biochemical and pharmacological properties of endothelium-derived relaxing factor and its similarity to nitric oxide radical. In: Vanhoutte PM (ed), Vasodilatation: Vascular Smooth Muscle, Peptides, and Endothelium. New York: Raven Press, 1988: 427–435.

    Google Scholar 

  10. Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA 1987; 84: 9265–9269.

    Article  PubMed  CAS  Google Scholar 

  11. Palmer RMJ, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 1987; 327: 524–526.

    Article  PubMed  CAS  Google Scholar 

  12. Khan MT, Furchgott RF. Additional evidence that the endothelium-derived relaxing factor is nitric oxide. In: Rand MC, Raper C (eds.), Pharmacology. Amsterdam: Elsevier, 1987: 341–344.

    Google Scholar 

  13. Palmer RMJ, Ashton DS, Moncada S. Endothelial cells synthesize nitric oxide from L-arginine. Nature 1988; 333: 664–666.

    Article  PubMed  CAS  Google Scholar 

  14. Moncada S, Palmer RMJ, Higgs EA. Nitric oxide: physiology, pathophysiology and pharmacology. Pharmacol Rev 1991; 43: 109–142.

    PubMed  CAS  Google Scholar 

  15. Moncada S, Higgs EA. The L-arginine-nitric oxide pathway. N Eng J Med 1993; 329: 2002–2012.

    Article  CAS  Google Scholar 

  16. Garthwaite J, Charles SL, Chess-Williams R. Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature 1988; 336: 3; 85–388.

    Article  Google Scholar 

  17. Bredt DS, Snyder SH. Nitric oxide mediates glutamate-linked enhancement of cGMP levels in the cerebellum. Proc Nat Acad Sci USA 1989; 86: 9030–9033.

    Article  PubMed  CAS  Google Scholar 

  18. Garthwaite J, Boulton CL. Nitric oxide signalling in the central nervous system. Annual Rev Physiol 1995; 57: 683–706.

    Article  PubMed  CAS  Google Scholar 

  19. Gillespie JS, Liu X, Martin W. The effect of L-arginine and NG-monomethyl-L-arginine on the response of the rat anococcygeus to NANC nerve stimulation. Br J Pharmacol 1989; 98: 1089-1082.

    Google Scholar 

  20. Rand MJ. Nitrergic transmission: nitric oxide as a mediator of non-adrenergic, noncholinergic neuro-effector transmission. Clin Exp Pharmacol Physiol 1992; 19: 147–169.

    Article  PubMed  CAS  Google Scholar 

  21. Hibbs JB Jr, Taintor RR, Vavrin Z, Rachlin EM. Nitric oxide: a cytotoxic activated macrophage effector molecule. Biochem Biophys Res Commun 1988; 157: 87–94.

    Article  PubMed  CAS  Google Scholar 

  22. Marietta MA, Yoon PS, Iyengar R, Leaf CD, Wishnok JS. Macrophage oxidation of L-arginine to nitrite and nitrate: nitric oxide is an intermediate. Biochemistry 1988; 27: 8706–8711

    Article  Google Scholar 

  23. Stuehr D, Gross S, Sakuma I, Levi R, Nathan C. Activated murine macrophages secrete a metabolite of arginine with the bioactivity of endothelium-derived relaxing factor and the chemical reactivity of nitric oxide. J Exp Med 1989; 169: 1011–1020.

    Article  PubMed  CAS  Google Scholar 

  24. Nathan CF, Hibbs JB Jr. Role of nitric oxide synthesis in macrophage antimicrobial activity. Curr Opin Immunol 1991; 3: 65–70.

    Article  PubMed  CAS  Google Scholar 

  25. Nussler AK, Billiar TR. Inflammation, immunoregulation and inducible nitric oxide synthase. J Leukoc Biol 1993; 54: 171–178.

    PubMed  CAS  Google Scholar 

  26. Sessa WC. The nitric oxide synthase family of proteins. J Vasc Res 1994; 31: 131–143.

    Article  PubMed  CAS  Google Scholar 

  27. Knowles RG, Moncada S. Nitric oxide synthases in mammals. Biochem J 1994; 298: 249–258.

    PubMed  CAS  Google Scholar 

  28. Stuehr DJ, Griffith OW. Mammalian nitric oxide synthases. Adv Enzymol Relat Areas Mol Bipl 1992; 65: 287–346.

    CAS  Google Scholar 

  29. Luscher TF, Vanhoutte PM. The endothelium: modulator of cardiovascular function. Boca Raton: CRC Press, 1990: 111–146.

    Google Scholar 

  30. Pieper GM, Gross JG, Endothelial function in diabetes. In: Rubanyi GM (ed.), Cardiovascular significance of endothelium-derived vasoactive factors. Mount Kisco, NY: Futura Publishing Co., 1991: 223–249.

    Google Scholar 

  31. Cohen RA. Dysfuncion of vascular endothelium in diabetes mellitus. Circulation 1993; 87(Suppl. V): V67–V76.

    Google Scholar 

  32. Tesfamariam B, Cohen RA. Free radicals mediate endothelial cell dysfunction caused by elevated glucose, Am J Physiol 1992; 263: H321–H326.

    PubMed  CAS  Google Scholar 

  33. Hattori Y, Kawasaki H, Abe K, Kanno M. Superoxide dismutase recovers altered endothelium-dependent relaxation in diabetic rat aorta. Am J Physiol 1991; 261: H1086–H1094.

    PubMed  CAS  Google Scholar 

  34. Heygate KM, Lawrence IG, Bennett MA, Thurston H. Impaired endothelium relaxation in isolated resistance vessels of spontaneously diabetic rats. Br J Pharmacol 1995; 116: 3251–3259.

    Article  PubMed  CAS  Google Scholar 

  35. Bucala R, Tracey KJ, Cerami A. Advanced glycosylatin products quench nitric oxide and mediate defective endothelium-dependent vasodilation in experimental diabetes. J Clin Invest 1991; 87: 432–438.

    Article  PubMed  CAS  Google Scholar 

  36. Bucala R, Vlassara H. Advanced glycosylation end products in diabetic renal and vascular disease. Amer J Kidney Dis 1995; 26: 875.

    Article  CAS  Google Scholar 

  37. Saenz de Tejada I, Goldstein I, Azadzoi K, Krane RJ, Cohen RA. Impaired neurogenic and endothelium-dependent relaxation of human penile smooth muscle: The pathophysiological basis for impotence in diabetes mellitus. N Eng J Med 1989; 320: 1025–1030.

    Article  Google Scholar 

  38. Johnstone MT, Creager SJ, Scales KM, Cusco JA, Lee BK, Creager MA. Impaired endothelium-dependent vasodilation in patients with insulin-dependent diabetes mellitus. Circulation 1993; 88:2510-1516.

    Google Scholar 

  39. Steinberg HO, Chaker H, Learning R, Johnson A, Brechtel G, Baron AD. Obesity/insulin resistance is associated with endothelial disfunction. J Clin Invest 1996; 97: 2601–2610.

    Article  PubMed  CAS  Google Scholar 

  40. Baron AD. Hemodynamic actions of insulin. Am J Physiol 1994; 267: E187–E202.

    PubMed  CAS  Google Scholar 

  41. Scherrer U. Insulin and the regulation of the cardiovascular system: Role of the L-arginine nitric oxide pathway and the sympathetic nervous system. In: Luscher TF (ed.), The Endothelium in Cardiovascular Disease. Berlin: Springer-Verlag, 1995: 108–127.

    Google Scholar 

  42. Steinberg HO, Brechtel G, Johnson A, Fineberg N, Baron AD. Insulin-mediated skeletal muscle vasodilation is nitric oxide dependent. J Clin Invest 1994; 94: 1172–1179.

    Article  PubMed  CAS  Google Scholar 

  43. Scherrer U, Randin D, Vollenweider P, Vollenweider L, Nicod P. Nitric oxide release accounts for insulin’s vascular effects in humans. J Clin Invest 1994; 94: 2511–2515.

    Article  Google Scholar 

  44. Toda N, Okamura T. Nitroxidergic nerve: regulation of vascular tone and blood flow in the brain. J Hypertension 1996; 14: 423–434.

    Article  CAS  Google Scholar 

  45. Wu H-y, Jeng YY, Chung-jun Y, Kuang-Yuh C, Hsueh WA, Chan TM. Endothelium-dependent vascular effects of insulin and insulin-like growth factor I in the perfused rat mesenteric artery and aortic ring. Diabetes 1994; 43: 1027–1032.

    Article  PubMed  CAS  Google Scholar 

  46. Walker AB, Savage MW, Dores J, Williams G. Insulin-induced attenuation of noradrenaline-mediated vasoconstriction in resistance arteries from Wistar rats is nitric oxide dependent. Clinical Sci 1997; 92: 147–152.

    CAS  Google Scholar 

  47. Thorn S, Hughes A, Sever PS. Endothelium-dependent responses in human arteries. In: Vanhoutte PM (ed.), Relaxing and Contracting Factors. Clifton, NJ: Humana Press, 1988: 511–529.

    Google Scholar 

  48. Nerup J, Mandroup-Poulsen T, Helqvist S, Anderson HU, Pociet F, Reimers JI, Cuartero BG, Karlsen AE, Bjerre U, Lornzen T. On the pathogenesis of IDDM. Diabetologia 1994; 37(Suppl. 2): S82–S89.

    Article  PubMed  Google Scholar 

  49. McDaniel ML, Kwon G, Hill JR, Marshall CA, Corbett JA. Cytokines and nitric oxide in islet cell inflammation and diabetes. PSEBM 1996; 211: 24–36.

    CAS  Google Scholar 

  50. Raij L, Baylis C. Glomerular actions of nitric oxide, Kidney Int 1995; 48: 20–32.

    Article  PubMed  CAS  Google Scholar 

  51. Tolins JP, Schultz PJ, Raij L, Brown DM, Mauer SM. Abnormal renal hemodynamic response to reduced renal perfusion pressure in diabetic rats. Am J Physiol 1993; 265: F886–F895.

    PubMed  CAS  Google Scholar 

  52. Bank N, Aynedjian HS. Role of EDRF (nitric oxide) in diabetic renal hyperfiltration. Kidney Int 1993; 43: 1306–1312.

    Article  PubMed  CAS  Google Scholar 

  53. Stockard JD, Sansom SC. Regulation of filtration rate by glomerular mesangial cells in health and diabetic renal disease. Am J Kidney Dis 1997; 29: 971–981.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Furchgott, R.F. (1998). NO and diabetic complications. In: Friedman, E.A., L’Esperance, F.A. (eds) Diabetic Renal-Retinal Syndrome. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4962-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4962-4_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6083-7

  • Online ISBN: 978-94-011-4962-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics