Skip to main content

Squeeze flow

  • Chapter
Rheological Measurement

Abstract

The squeezing of a disc-shaped sample of fluid between parallel plates under the action of a normal force represents a simple, yet extremely useful rheological technique. It has been used for many years, with Stefan [1] solving the relationship between squeezing force and plate separation for squeezing of a Newtonian fluid in 1874. But since the advent of capillary rheometry and rotational rheometry, material characterization has made only limited use of squeeze flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stefan, J.K. (1874) Akac. Wiss., Math. Natur., Wien, 69, 713–735.

    Google Scholar 

  2. Scott, J.R. (1931) Theory and application of the parallel plate viscometer. Trans. Inst. Rubber Ind., 7, 169–186.

    CAS  Google Scholar 

  3. Collyer, A.A. and Clegg, D.W. (1988) Rheological Measurement, Elsevier, London, Ch. 3.

    Google Scholar 

  4. Laun, H.M. (1996) Squeezing flow rheometry to determine viscosity, wall slip and yield stresses of polymer melts, in Proceedings of the Twelfth Annual Meeting of the Polymer Processing Society, Sorrento, Italy, May 27–31.

    Google Scholar 

  5. Dienes, G.J. and Klemm, H.F. (1946) Theory and application of the parallel plate plastometer. J. Appl. Phys., 46, 458–471.

    Article  Google Scholar 

  6. Shaw, M.T. (1977) Melt characterisation of ultra high molecular weight polyethylene using squeeze flow. Polym. Eng. Sci., 17, 266–268.

    Article  CAS  Google Scholar 

  7. Winther, G., Almdal, K. and Kramer, O. (1991) Determination of polymer melt viscosity by squeezing flow with constant plate viscosity. J. Non-Newt. Fluid Mech., 39, 137–187.

    Article  Google Scholar 

  8. Winther, G., Almdal, K. and Kramer, O. (1992) Squeezing flow properties of polymer melts at constant plate velocity, in Theoretical and Applied Rheology: Proceedings of the XIth International Congress on Rheology, Brussels, August.

    Google Scholar 

  9. Pham, H.T. and Meinecke, E.A. (1994) Squeeze film rheology of polymer melts: determination of the characteristic flow curve. J. Appl. Polym. Sci., 53, 257–264.

    Article  CAS  Google Scholar 

  10. Deng, Y., Martin, G.C., Kohut, G.P. and Gotro, J.T. (1994) The rheological characterization of fluorinated thermoplastics using squeezing flow viscometry. Polym. Eng. Sci., 34, 213–220.

    Article  Google Scholar 

  11. Bird, R.B., Armstrong, R.C. and Hassager, O. (1987) Dynamics of Polymeric Liquids, 2nd edn, Vol. 1, Wiley, New York.

    Google Scholar 

  12. Laun, H.M. (1992) Rheometry towards complex flows: squeeze flow technique. Chem. Macromol. Symp., 56, 55–66.

    Article  CAS  Google Scholar 

  13. Leider, P.J. and Bird, R.B. (1974) Squeezing flow between parallel disks I. Theoretical analysis. Ind. Eng. Chem. Fundam., 13, 336–346.

    Article  CAS  Google Scholar 

  14. Phan-Thien, N., Sugeng, F. and Tanner, R.I. (1987) The squeeze-film flow of a viscoelastic fluid. J. Non-Newt. Fluid Mech., 24, 97–119.

    Article  Google Scholar 

  15. McClelland, M.A. and Finlayson, B.A. (1983) Squeezing flow of elastic liquids. J. Non-Newt. Fluid Mech., 13, 181–201.

    Article  Google Scholar 

  16. Brindley, G., Davies, J.M. and Walters, K. (1976) Elastico-viscous squeeze films I. J. Non-Newt. Fluid Mech., 1, 19–37.

    Article  CAS  Google Scholar 

  17. McClelland, M.A. and Finlayson, B.A. (1988) Squeezing flow of highly viscous polymers. J. Rheol., 2, 101–133.

    Article  Google Scholar 

  18. Lee, S.J., Denn, M.M., Crochet, M.J., Metzner, A.B. and Riggins, G.J. (1984) Compressive flow between parallel disks II. Oscillatory behaviour of viscoelastic materials under a constant load. J. Non-Newt. Fluid Mech., 14, 301–325.

    Article  CAS  Google Scholar 

  19. Kotsikos, G., Bland, J.H. and Gibson, A.G. (1996) Squeeze flow mechanics for glass mat thermoplastics, in Proceedings of the 7th European Conference on Composite Materials, London, May 14–16, Woodhead Publishing, Vol. 1, pp. 213–219.

    CAS  Google Scholar 

  20. Kotsikos, G., Bland, J.H. and Gibson, A.G. (1996) Squeeze flow characterisation of glass mat thermoplastics, in Proceedings of the 4th Conference on Flow Processes in Composites, Aberystwyth, September 9–11.

    Google Scholar 

  21. Ericsson, A. (1996) Rheology of glass mat thermoplastic. Thesis 1472, LTC-EPFL, Lausanne.

    Google Scholar 

  22. Ericsson, K.A., Toll, S. and Manson, J.-A.E. The two-way interaction between anisotropic flow and fiber orientation in squeeze flow. J. Rheol., submitted.

    Google Scholar 

  23. Ericsson, K.A., Toll, S. and Manson, J.-A.E. Sliding plate rheometry of a concentrated fiber suspension. J. Rheol., submitted.

    Google Scholar 

  24. Toll, S. and Manson, J.-A.E. (1994) Dynamics of a planar concentrated fibre suspension with non-hydrodynamic interaction: the non-hydrodynamic stress system in a planar concentrated fiber suspension. J. Rheol., 38, 985–997.

    Article  CAS  Google Scholar 

  25. Batchelor, G.K. (1971) The stress generated in a non-dilute suspension of elongated particles by pure straining motion, J. Fluid Mech., 46, 813–829.

    Article  Google Scholar 

  26. Dinh, S.M. and Armstrong, R.C. (1984) A rheological equation of state for semiconcentrated fibre suspensions. J. Rheol., 28, 207–227.

    Article  CAS  Google Scholar 

  27. Goddard, J.D. (1976) Tensile stress contribution of flow-oriented slender particles in non-Newtonian fluids. J. Non-Newt. Fluid Mech., 1, 1–17.

    Article  Google Scholar 

  28. Shaqfeh, E.S.G. and Fredrickson, G.H. (1990) The hydrodynamic stress in a suspension of rods. Phys. Fluids A, 2, 7–24.

    Article  CAS  Google Scholar 

  29. Lee, L.J., Marker, L.F. and Griffith, R.M. (1981) The rheology and mold flow of polyester sheet molding compound. Polym. Compos., 2, 209–218.

    Article  CAS  Google Scholar 

  30. Barone, M.R. and Caulk, D.A. (1985) Kinematics of flow in sheet molding compounds. Polym. Compos., 6, 105–109.

    Article  CAS  Google Scholar 

  31. Barone, M.R. and Caulk, D.A. (1986) A model for the flow of a chopped fiber reinforced polymer compound in compression molding. J. Appl. Mech., 53, 361–371.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gibson, A.G., Kotsikos, G., Bland, J.H., Toll, S. (1998). Squeeze flow. In: Collyer, A.A., Clegg, D.W. (eds) Rheological Measurement. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4934-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4934-1_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6070-7

  • Online ISBN: 978-94-011-4934-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics