Skip to main content

Using large-amplitude oscillatory shear

  • Chapter
Rheological Measurement

Abstract

Although linear viscoelastic properties can be measured in many ways, the small-amplitude oscillatory shear test is the most widely used method. Non-linear viscoelastic properties can also be measured in many ways, but no predominant test method has emerged among experimentalists. Whereas there is a unifying theory that describes linear behaviour, there is no unifying constitutive theory for non-linear viscoelasticity. For this reason, each non-linear test reveals a different aspect of a material’s behaviour. Hence, experimentalists have designed various transient experiments to capture different features of non-linear viscoelasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.D. Ferry (1980) Viscoelastic Properties of Polymers, 3rd edn, John Wiley, New York.

    Google Scholar 

  2. M.D. Graham (1995) J. Rheol. 39(4), 697–712.

    CAS  Google Scholar 

  3. R.F. Steidel, Jr (1979) An Introduction to Mechanical Vibrations, 2nd edn, Wiley, New York.

    Google Scholar 

  4. A.S. Lodge (1960) Proceedings, Colloques Internationaux du CNRS, Phénomènes de Relaxation et de Fluage en Rhéologie Non-Linéaire, June 27 to July 2, XCVIII, 51–63.

    Google Scholar 

  5. J.A. Kornfield, G.G. Fuller and D.S. Pearson (1990) Rheol. Acta 29, 105.

    CAS  Google Scholar 

  6. J.G. Oakley and A.J. Giacomin (1994) Polym. Eng. Sci. 34(7), 580–584.

    CAS  Google Scholar 

  7. J.L. Schrag, Trans. Soc. Rheol. 21(3), 399.

    Google Scholar 

  8. R. Darby (1976) Viscoelastic Fluids: An Introduction to Their Properties and Behavior, Marcel Dekker, New York, p. 251.

    Google Scholar 

  9. B.H. Shah and R. Darby (1976) Polym. Eng. Sci. 16(1), 46.

    CAS  Google Scholar 

  10. J. Dunwoody (1994) Proc. Symp. on Developments in Non-Newtonian Flows II, ASME, Int. Mech. Eng. Congr. and Expo., Chicago IL, November 6–11, 1994.

    Google Scholar 

  11. J. Dunwoody (1994) J. Non-Newt. Fluid Mech. 53, 83–98.

    Google Scholar 

  12. J. Dunwoody (1994) Advances in Structured and Heterogeneous Continua, D.A. Siginer and Y.G. Yanovsky (eds), Allerton Press, New York.

    Google Scholar 

  13. R.A. Schapery (1964) AIAA J. 2(5), 827–835.

    Google Scholar 

  14. R.A. Schapery (1965) J. Appl. Mech. 2(5), 611–619.

    Google Scholar 

  15. R.A. Schapery and D.E. Cantey (1966) AIAA J. 4(2), 255–264.

    Google Scholar 

  16. F. Koran (1994) Anomalous wall slip behavior of linear low density polyethylenes, MEng Thesis, Dept. of Chemical Engineering, McGill University, Montreal, Canada.

    Google Scholar 

  17. L.A. Archer, Y.-L. Chen and R.G. Larson (1995) J. Fluid Mech., 301, 133–151.

    CAS  Google Scholar 

  18. J.M. Dealy (1982) Rheometers for Molten Plastics: A Practical Guide to Testing and Property Measurement, Van Nostrand, New York.

    Google Scholar 

  19. P.K. Dhori, J.C. Slattery and A.J. Giacomin (1996) J. Coll. Int. Sci., submitted.

    Google Scholar 

  20. W.C. MacSporran and R.P. Spiers (1984) Rheol. Acta 23, 90.

    Google Scholar 

  21. D.S. Pearson and W.E. Rochefort (1982) J. Polym. Sci.: Pol. Phys. Ed. 20, 83.

    CAS  Google Scholar 

  22. R.G. Larson (1992) Rheol. Acta 31, 213–263.

    CAS  Google Scholar 

  23. R.L. Powell and W.H. Schwarz (1979) J. Polym. Sci.: Pol. Phys. Ed. 17, 969.

    CAS  Google Scholar 

  24. R.L. Powell and W.H. Schwarz (1979) J. Rheol. 23(3), 323.

    CAS  Google Scholar 

  25. R.P. Spiers (1977) PhD Thesis, University of Bradford.

    Google Scholar 

  26. S. Onogi, T. Masuda and T. Matsumoto (1970) Trans. Soc. Rheol. 14(2), 275.

    CAS  Google Scholar 

  27. T. Matsumoto, Y. Segawa, Y. Warashina and S. Onogi (1973) Trans. Soc. Rheol. 17(1), 47.

    CAS  Google Scholar 

  28. S. Onogi and T. Matsumoto (1981) Polym. Eng. Rev. I(1), 45.

    Google Scholar 

  29. T.-T. Tee and J.M. Dealy (1975) Trans. Soc. Rheol. 19(4), 595.

    CAS  Google Scholar 

  30. J.M. Dealy, J.F. Petersen and T.-T. Tee (1973) Rheol. Acta 12, 550.

    CAS  Google Scholar 

  31. T.-T. Tee (1974) Large amplitude oscillatory shearing of polymer melts, Doctoral Dissertation, Dept. of Chemical Engineering, McGill University, Montreal, Canada.

    Google Scholar 

  32. R. V. McCarthy (1978) J. Rheol. 22(6), 623.

    CAS  Google Scholar 

  33. A.T. Tsai and D.S. Soong (1985) J. Rheol. 29(1), 1–18.

    CAS  Google Scholar 

  34. G.E. Hibberd, W.J. Wallace and K.A. Wyatt (1966) J. Sci. Instrum. 43, 84.

    CAS  Google Scholar 

  35. G.E. Hibberd and N.S. Parker (1975) Cereal Chem. 52(3-II), lr.

    Google Scholar 

  36. J.M. Dealy and A.J. Giacomin (1988) Rheological Measurement, A.A. Collyer and D.W. Clegg (eds), Elsevier, London, Ch. 12.

    Google Scholar 

  37. T.Y. Liu, D.W. Mead, D.S. Soong and M.C. Williams (1983) Rheol. Acta 22, 81.

    CAS  Google Scholar 

  38. T.Y. Liu, D.S. Soong and M.C. Williams (1984) J. Polym. Sci. Pol. Phys. Ed. 2, 1561.

    Google Scholar 

  39. N. Sivashinsky, A.T. Tsai, T.J. Moon and D.S. Soong (1984) J. Rheol. 28(3), 287.

    CAS  Google Scholar 

  40. J.M. Dealy (1984) US Patent 4464 928, August 14.

    Google Scholar 

  41. J.M. Dealy, S.R. Doshi and F.R. Bubic (1992) US Patent 5094 100.

    Google Scholar 

  42. A.J. Giacomin, T. Samurkas and J.M. Dealy (1989) Polym. Eng. Sci. 29, 499.

    CAS  Google Scholar 

  43. A.J. Giacomin and J.M. Dealy (1986) Paper G3, Abstracts, Society of Rheology, 58th Annual Meeting, Tulsa OK, October, p. 26.

    Google Scholar 

  44. A.J. Giacomin (1987) A sliding plate melt rheometer incorporating a shear stress transducer, Doctoral Dissertation, Dept. of Chemical Engineering, McGill University, Montreal, Canada, June.

    Google Scholar 

  45. K.A. Ericsson, S. Toll and J.-A.E. Månson (1994) Proc. Fourth Eur. Conf. Rheol., Seville, Spain, pp. 483–485.

    Google Scholar 

  46. I.M. Krieger (1973) Rheol. Acta 12, 567–571.

    Google Scholar 

  47. T.-F. Niu and I.M. Krieger (1977) A rheometer for characterization of nonlinear and time-dependent fluids, in Computers in Polymer Sciences, J.S. Mattson, H.B. Mark, Jr and H.C. MacDonald, Jr (eds), Marcel Dekker, New York, Ch. 7.

    Google Scholar 

  48. J.S. Dodge and I.M. Krieger (1971) Trans. Soc. Rheol. 15, 589–601.

    Google Scholar 

  49. A.J. Giacomin and J.G. Oakley (1993) Rheol. Acta 32, 328–332.

    CAS  Google Scholar 

  50. J.H. Poynting, J.J. Thomson and W.S. Tucker (1949) Sound, Griffin, London.

    Google Scholar 

  51. A.P. French (1971) Vibration and Waves, Norton, New York.

    Google Scholar 

  52. W. Philippoff (1966) Trans. Soc. Rheol. 10(1), 317.

    CAS  Google Scholar 

  53. K. Walters and T.E.R. Jones (1970) Proc. 5th Int. Cong. Rheol., Vol. 4, S. Onogi (ed), University of Tokyo Press, Tokyo, p. 337.

    Google Scholar 

  54. J. Harris and K. Bogie (1967) Rheol. Acta 6(1), 3.

    CAS  Google Scholar 

  55. I.F. MacDonald, B.D. Marsh and E. Ashare (1965) Chem. Eng. Sci. 24, 1615.

    Google Scholar 

  56. G.V. Vinogradov, Y. Yanovsky and A.I. Isayev (1970) J. Polym. Sci. A-2 8, 1239.

    CAS  Google Scholar 

  57. P.J. Cain (1986) Bull. 300014-56170.70-02, MTS Systems Corp., Eden Prairie, Minnesota.

    Google Scholar 

  58. D.O. Stalnaker and T.S. Fleischman (1985) Closed Loop, 14(2), MTS Systems Corp., Eden Prairie MN, p. 4.

    Google Scholar 

  59. I.F. MacDonald, B.D. Marsh and E. Ashare (1969) Chem. Eng. Sci. 24, 1615.

    CAS  Google Scholar 

  60. G.B. Thurston (1981) J. Non-Newt. Fluid Mech. 9, 57.

    CAS  Google Scholar 

  61. G.B. Thurston and G.A. Pope. (1981) J. Non-Newt. Fluid Mech. 9, 69.

    CAS  Google Scholar 

  62. R. Lapasin, S. Pricl and P. Tracanelli (1992) J. Appl. Polym. Sci. 46, 1713–1722.

    CAS  Google Scholar 

  63. R. Heinrich, personal communication.

    Google Scholar 

  64. A.C. Pipkin (1972) Lectures in Viscoelasticity Theory, Springer-Verlag, New York.

    Google Scholar 

  65. R.I. Tanner (1985) Engineering Rheology, Clarendon Press, Oxford.

    Google Scholar 

  66. G. Astarita and R.J.J. Jongschaap (1977/78) J. Non-Newt. Fluid Mech. 3, 281.

    Google Scholar 

  67. Y. Ohta, T. Kojima, T. Takigawa and T. Masuda (1987) J. Rheol. 31, 711.

    CAS  Google Scholar 

  68. S.G. Hatzikiriakos and J.M. Dealy (1991) J. Rheol. 35(4), 497–523.

    CAS  Google Scholar 

  69. A.S. Yoshimura and R.K. Prud’homme (1988) J. Rheol. 32(6), 575–584.

    CAS  Google Scholar 

  70. D.W. Adrian and A.J. Giacomin(1992) J. Rheol. 36(7), 1227–1243.

    CAS  Google Scholar 

  71. D.W. Adrian and A.J. Giacomin(1994) J. Eng. Mater. Technol. 116, 446–450.

    CAS  Google Scholar 

  72. G.V. Vinogradov, A.I. Isayev and E.V. Katsyutsevich (1978) J. Appl. Polym. Sci. 22, 727–749.

    CAS  Google Scholar 

  73. H.-C. Yen and L.V. Mclntire (1972) Trans. Soc. Rheol. 16(4), 711.

    CAS  Google Scholar 

  74. G. Williams (1970) PhD Thesis, Division of Engineering, Brown University, December.

    Google Scholar 

  75. J.S. Vrentas, D.C. Venerus and C.M. Vrentas (1991) J. Non-Newt. Fluid Mech. 40, 1–24.

    CAS  Google Scholar 

  76. Giacomin, A.J., R.S. Jeyaseelan, T. Samurkas and J.M. Dealy (1993) J. Rheol. 37(5), 811–826.

    CAS  Google Scholar 

  77. M.J. Reimers and J.M. Dealy (1996) J. Rheol. 40, 167–186.

    CAS  Google Scholar 

  78. M.J. Reimers (1997) Sliding plate rheometer studies of concentrated polystyrene solutions in large-amplitude oscillating shear fields, PhD Thesis, McGill University, Montreal, Canada.

    Google Scholar 

  79. I.M. Ward (1971) Mechanical Properties of Solid Polymers, Wiley, New York.

    Google Scholar 

  80. F.J. Lockett (1972) Nonlinear Viscoelastic Solids, Academic Press, New York.

    Google Scholar 

  81. W.M. Davis and C.W. Macosko (1978) Trans. Soc. Rheol. 22(1), 53–71

    CAS  Google Scholar 

  82. A.S. Lodge (1964) Elastic Liquids, Academic Press, New York.

    Google Scholar 

  83. G. Brindley (1975) PhD Thesis, University of Wales.

    Google Scholar 

  84. I.F. MacDonald (1975) Rheol. Acta 14, 801.

    CAS  Google Scholar 

  85. G. Brindley and W.M. Waterhouse (1975) Rheol. Acta 14, 1032–1035.

    CAS  Google Scholar 

  86. I.F. MacDonald (1975) Rheol. Acta 14, 906.

    CAS  Google Scholar 

  87. I.F. MacDonald (1968) Time dependent nonlinear behavior of viscoelastic fluids, PhD Thesis, Dept. of Chemical Engineering, University of Wisconsin.

    Google Scholar 

  88. P.J. Carreau and D. De Kee (1979) Can. J. Chem. Eng. 57, 3–15.

    CAS  Google Scholar 

  89. Y.Z. Xu, C.F. Chan Man Fong and D. De Kee (1996) J. Appl. Polym. Sci. 59, 1099–1105.

    CAS  Google Scholar 

  90. R.I. Tanner (1968) Trans. Soc. Rheol. 12(1), 155–182.

    CAS  Google Scholar 

  91. D. Acierno, F.P. La Mantia, G. Marrucci and G. Titomanlio (1976) J. Non Newt. Fluid Mech. 1, 147.

    CAS  Google Scholar 

  92. W.K.-W. Tsang and J.M. Dealy (1981) J. Non-Newt. Fluid Mech. 9, 203.

    CAS  Google Scholar 

  93. A.J. Giacomin and J.G. Oakley (1992) J. Rheol. 36(8), 1529–1546

    CAS  Google Scholar 

  94. J. Mewis and M.M. Denn (1983) J. Non-Newt. Fluid Mech. 12, 69–83.

    CAS  Google Scholar 

  95. R.S. Jeyaseelan, A.J. Giacomin and J.G. Oakley (1993) AIChE J. 39(5), 846–854.

    CAS  Google Scholar 

  96. A.J. Giacomin and R.S. Jeyaseelan (1995) Polym. Eng. Sci. 35(9), 768–777.

    CAS  Google Scholar 

  97. R.S. Jeyaseelan and A.J. Giacomin (1995) J. Appl. Mech. 62(3), 794–801.

    CAS  Google Scholar 

  98. N. Orbey and J.M. Dealy (1991) J. Rheol. 35(6), 1035–1049.

    CAS  Google Scholar 

  99. R.S. Jeyaseelan and A.J. Giacomin (1993) J. Non-Newt. Fluid Mech. 47, 267–280.

    CAS  Google Scholar 

  100. N. Phan-Thien (1978) J. Rheol. 22, 259.

    CAS  Google Scholar 

  101. R.S. Jeyaseelan and A.J. Giacomin (1994) J. Eng. Mater. Technol. 116(1), 14–18.

    Google Scholar 

  102. A.J. Giacomin, R.S. Jeyaseelan and K.O. Stanfill (1994) Polym. Eng. Sci. 34(11), 888–893.

    CAS  Google Scholar 

  103. A.I. Isayev and C.A. Hieber (1982) J. Polym. Sci.: Pol. Phys. Ed. 20, 423–440.

    CAS  Google Scholar 

  104. A.I. Leonov (1976) Rheol. Acta 15, 85–98.

    Google Scholar 

  105. M. Simhambhatla and A.I. Leonov (1995) Rheol. Acta 34, 259–273.

    CAS  Google Scholar 

  106. D. De Kee and C.F. Chan Man Fong (1992) in Theoretical and Applied Rheology, P. Moldenaers and S. Keunings (eds), Elsevier, Amsterdam, pp. 598–600.

    Google Scholar 

  107. R.S. Jeyaseelan and A.J. Giacomin (1995) Polym. Gels Networks 3, 117–133.

    CAS  Google Scholar 

  108. F. Gadala-Maria (1979) The rheology of concentrated suspensions, PhD Dissertation, Stanford University, Stanford CA.

    Google Scholar 

  109. F. Gadala-Maria and A. Acrivos (1980) J. Rheol. 24(6), 799–814.

    CAS  Google Scholar 

  110. N. Phan-Thien (1995) J. Rheol. 39(4), 679–695.

    CAS  Google Scholar 

  111. G. Schoukens, A.J.B. Spaull and J. Mewis (1976) Proc. VIIth Int. Congr. Rheol., Gothenburg, Sweden, August 23–27, pp. 498–499.

    Google Scholar 

  112. M. Parthasarathy and D.J. Klingenberg (1995) Rheol. Acta 34, 430–439.

    CAS  Google Scholar 

  113. A.S. Yoshimura and R.K. Prud’homme (1987) Rheol. Acta 26, 428–436.

    CAS  Google Scholar 

  114. J.G. Kirkwood and R.J. Plock (1956) J. Chem. Phys. 24, 665–669.

    CAS  Google Scholar 

  115. E. Paul, J. Chem. Phys. 51, 1271–1272.

    Google Scholar 

  116. R.B. Bird, H.R. Warner, Jr and D.C. Evans (1971) Adv. Polym. Sci. 8, 1–90.

    CAS  Google Scholar 

  117. X.-J. Fan and R.B. Bird (1984) J. Non-Newt. Fluid Mech. 15, 341.

    CAS  Google Scholar 

  118. M. Doi and S.F. Edwards (1978) J. Chem. Soc., Faraday Trans. II 74, 1789, 1802, 1818; M. Doi and S.F. Edwards (1979) J. Chem. Soc. Faraday Trans. II 75, 38.

    CAS  Google Scholar 

  119. C.F. Curtiss and R.B. Bird (1981) J. Chem. Phys. 74, 2016–2026.

    CAS  Google Scholar 

  120. E. Helfand and D.S. Pearson (1982) J. Polym. Sci.: Polym. Phys. Ed. 20, 1249.

    CAS  Google Scholar 

  121. A.J. Giacomin and J.M. Dealy (1993) Large-amplitude oscillatory shear, in Techniques in Rheological Measurement, A.A. Collyer (ed.), Springer Science+Business Media Dordrecht, London, Ch. 4.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Giacomin, A.J., Dealy, J.M. (1998). Using large-amplitude oscillatory shear. In: Collyer, A.A., Clegg, D.W. (eds) Rheological Measurement. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4934-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4934-1_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6070-7

  • Online ISBN: 978-94-011-4934-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics