Skip to main content

Addressing the Microbial Ecology of Marine Biofilms

  • Chapter
Molecular Approaches to the Study of the Ocean

Abstract

Stated simply, biofilms are microorganisms attached to a solid surface. Biofilms pervade virtually all environments, often dominating the microbial activity distributed between the individual planktonic and aggregated habitats (van Loosdrecht et al., 1990).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alldredge, A.L. and Cohen, Y. (1987) Can microscale chemical patches persist in the sea? Microelectrode study of marine snow, fecal pellets. Nature, 235, 689–91.

    CAS  Google Scholar 

  • Alldredge, A.L. and Silver, M.W. (1988) Characteristics, dynamics and significance of marine snow. Progress in Oceanography, 20, 41–82.

    Article  Google Scholar 

  • Amann, R.I., Binder, B.J., Olson, R.J. et al. (1990a) Combination of 16S rRNA-targeted oligonudeotide probes with flow cytometry for analyzing mixed microbial populations. Applied Environmental Microbiology, 56, 1919–25.

    CAS  Google Scholar 

  • Amann, R.I., Krumholz, L. and Stahl, D.A. (1990b) Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. Journal of Bacteriology, 172, 762–70.

    PubMed  CAS  Google Scholar 

  • Amann, R.I., Ludwig, W. and Schleifer, K.-H. (1995) Phylogenetic identification and in situ detection of individual cells without cultivation. Microbiological Reviews, 59, 143–69.

    PubMed  CAS  Google Scholar 

  • Atkinson, B. and Dauod, I.S. (1968) The analogy between micro-biological ‘reactions’ and heterogeneous catalysts. Transactions of the Institute of Chemical Engineers, 46, 19–26.

    Google Scholar 

  • Atkinson, B. and Davis, I.J. (1974) The overall rate of substrate uptake (reaction) by microbial films: part La. biological rate equation. Transactions of the Institute of Chemical Engineers, 52, 248–60.

    CAS  Google Scholar 

  • Atlas, R.M. and Steffen, R.J. (1991) Polymerase chain reaction: applications in environmental microbiology. Annual Review of Microbiology, 45, 137–61.

    Article  PubMed  Google Scholar 

  • Bianchi, M., Marty, D., Teyssié, J.-L. and Fowler, S.W. (1992) Strictly aerobic and anaerobic bacteria associated with sinking particulate matter and Zooplankton fecal pellets. Marine Ecology Progress Series, 88, 55–60.

    Article  Google Scholar 

  • Bishop, P.L. and Rittmann, B.E. (1995) Modeling heterogeneity in biofilms. Newsletter of the Biofilms Specialty Group of the International Association of Water Quality, 2, 7–10.

    Google Scholar 

  • Brint, J.M. and Ohman, D, (1995) Synthesis of multiple exoproducts in Pseudomonas aeruginosa is under the control of RMR-RhII, another set of regulators in strain PAO1 with homology to the autoinducer-responsive LuxR-LuxI family. journal of Bacteriology, 177, 7155–63.

    PubMed  CAS  Google Scholar 

  • Bryers, J.D. and Characklis, W.G. (1982) Processed governing primary biofilm formation. Biotechnology and Bioengineering, 24, 2451–76.

    Article  PubMed  CAS  Google Scholar 

  • Byung, C.C. and Azam, F. (1988) Major role of bacteria in biogeochemical fluxes in the ocean’s interior. Nature, 332, 441–3.

    Article  Google Scholar 

  • Characklis, W.G. and Marshall, K.C. (1990) Biofilms, John Wiley & Sons, New York.

    Google Scholar 

  • Chróst, R.J. (1990) Microbial ectoenzymes in aquatic environments, in Aquatic Microbial Ecology: Biochemical and Molecular Approaches (eds J. Overbeck and R.J. Chröst), Springer-Verlag, New York, pp. 47–78.

    Google Scholar 

  • Clewell, D.B. (1993) Bacterial sex pheromone-induced plasmid transfer. Cell, 73, 9–12.

    Article  PubMed  CAS  Google Scholar 

  • Cooksey, K.E. and Wigglesworth-Cooksey, B. (1995) Adhesion of bacteria and diatoms to surfaces in the sea: a review. Aquatic Microbial Ecology, 9, 87–96.

    Article  Google Scholar 

  • Costerton, J.W., Cheng, K.-J., Geesey, G.G. et al. (1987) Bacterial biofilms in nature and disease. Annual Review of Microbiology, 41, 435–64.

    Article  PubMed  CAS  Google Scholar 

  • Costerton, J.W., Lewandowski, Z., DeBeer, D. et al. (1994) Biofilms, the customized microniche. Journal of Bacteriology, 176, 2137–42.

    PubMed  CAS  Google Scholar 

  • Costerton, J.W., Lewandowski, Z., Caldwell, D.E. et al. (1995) Microbial biofilms. Annual Review of Microbiology, 49, 711–45.

    Article  PubMed  CAS  Google Scholar 

  • DeBeer, D., Stoodley, P., Roe, F. and Lewandowski, Z. (1994) Effects of biofilm structures on oxygen distribution and mass transport. Biotechnology and Bioengineering, 43, 1131–8.

    Article  CAS  Google Scholar 

  • Decho, A.W. and Herndl, G.J. (1995) Microbial activities and the transformation of organic matter within mucilaginous material. Science Total Environment, 165, 33–42.

    Article  CAS  Google Scholar 

  • DeLong, E.F., Franks, D.G. and Alldredge, A.L. (1993) Phylogenetic diversity of aggregate-attached vs. free-living marine bacterial assemblages. Limnology and Oceanography, 38, 924–34.

    Article  Google Scholar 

  • Droppo, LG., Flannigan, D.T., Leppard, G.G. et al. (1996) Floe stabilization for multiple microscopic techniques. Applied Environmental Microbiology, 62, 3508–15.

    CAS  Google Scholar 

  • Eashwar, M., Maruthamuthu, S., Sathiyanarayanan, S. and Balakrishnan, K. (1995) The ennoblement of stainless alloys by marine biofilms: the neutral pH and passivity enhancement model. Corrosion Science, 37, 1169–76.

    Article  CAS  Google Scholar 

  • Fenchel, T. and Finlay, B.J. (1995) Ecology and Evolution in Anoxic Worlds, Oxford University Press, Oxford.

    Google Scholar 

  • Flemming, H.-C. (1993) Biofilms and environmental protection. Water Science and Technology, 27, 1–10.

    CAS  Google Scholar 

  • Fuqua, W.C., Winans, S. and Greenberg, E.P. (1994) Quorum sensing in bacteria: the LuxR-Luxl family of cell density-responsive transcriptional regulators. Journal of Bacteriology, 176, 269–75.

    PubMed  CAS  Google Scholar 

  • Furumai, H. and Rittmann, B.E. (1994) Interpretation of bacterial activities in nitrification filters by a model considering the kinetics of soluble microbial products. Water Science and Technology, 30, 147–56.

    CAS  Google Scholar 

  • Gantzer, C.J., Cunningham, A.B., Gujer, W. et al, (1989) Interfacial processes at biofilm surfaces, in Structure and Function of Biofilms (eds W.G. Characklis and P.A. Wilderer), John Wiley & Sons, Chichester, pp. 73–90.

    Google Scholar 

  • Geesey, G.G. and White, D.C. (1990) Determination of bacterial growth and activity at solid-liquid interfaces. Annual Review of Microbiology, 44, 579–602.

    Article  PubMed  CAS  Google Scholar 

  • Harremoës, P. (1976) The significance of pore diffusion to filter denitrification. Journal of the Water Pollution Control Federation, 48, 377–88.

    Google Scholar 

  • Harremoës, P. (1977) Half-order reactions in biofilm and filter kinetics. VATTEN, 2,122.

    Google Scholar 

  • Hohnström, C. and Kjelleberg, S. (1994) The effect of external biological factors on settlement of marine invertebrate and new antifouling technology. Biofouling, 8, 147–60.

    Article  Google Scholar 

  • Kaiser, D. and Losick, R. (1993) How and why bacteria talk to each other. Cell, 73, 873–85.

    Article  PubMed  CAS  Google Scholar 

  • Karl, D.M. (1994) Accurate estimation of microbial loop processes and rates. Microbial Ecology, 28, 147–50.

    Article  Google Scholar 

  • Karl, D.M., Knauer, G.A. and Martin, J.H. (1988) Downward flux of particulate organic matter in the ocean: a particle decomposition paradox. Nature, 332, 438–41.

    Article  Google Scholar 

  • Kissel, J.C., McCarty, P.L. and Street, R.L. (1984) Numerical simulations of mixed-culture biofilm. Journal of Environmental Engineering, 110, 393–411.

    Article  CAS  Google Scholar 

  • Lee, W., Lewandowski, Z., Nielsen, P.H. and Hamilton, W.A. (1995) Role of sulfate-reducing bacteria in corrosion of mild steel: a review. Biofouling, 8, 165–94.

    Article  CAS  Google Scholar 

  • Lewandowski, Z. and Altobelli, S. (1995) Water flow in a narrow conduit covered with biofilm. Water Science and Technology, 31, 171–81.

    Article  Google Scholar 

  • Little, B., Wagner, P. and Mansfield, F. (1991) Microbiologically influenced corrosion of metals and alloys. International Material Reviews, 36, 253–72.

    CAS  Google Scholar 

  • Lorenz, M.G. and Wackernagel, W. (1994) Bacterial gene transfer by natural genetic transformation in the environment. Microbiological Reviews, 58, 563–602.

    PubMed  CAS  Google Scholar 

  • Marshall, K.C. (1976) Interfaces in Microbial Ecology, Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Marshal, K.C. (ed.) (1984) Microbkl Adhesion and Aggregation, Springer-Verlag, Berlin.

    Google Scholar 

  • Mobarry, B.K., Wagner, M., Urbain, V. et al. (1996) Fhylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria. Applied Environmental Microbiology, 62, 2156–62.

    CAS  Google Scholar 

  • Müller-Niklas, G., Schuster, S., Kaltenböck, E. and Herndl, G.j. (1994) Organic content and bacterial metabolism in amorphous aggregations of the northern Adriatic Sea. Limnology and Oceanography, 39, 58–68.

    Article  Google Scholar 

  • Namkung, E., Stratton, R.G. and Rittmann, B.E. (1983) Predicting removal of trace-organic compounds by biofilms. Journal of the Water Pollution Control Federation, 55, 1366–72.

    CAS  Google Scholar 

  • Ohashi, A., deSilva, D.G.V., Mobarry, B. et al. (1996) Influence of substrate C/N ratio on the structure of multispecies biofilms consisting of nitrifiers and heterotrophs. Water Science and Technology, 32, 75–84.

    Article  Google Scholar 

  • Okabe, S., Hirata, K. and Watanabe, Y. (1997) Dynamic changes in spatial microbial distribution in mixed-population biofilms; experimental results and model simulation. Water Science and Technology (in press).

    Google Scholar 

  • Paerl, H.W. and Prufert, L. (1987) Oxygen-poor microzones as potential sites of microbial N2 fixation in nitrogen-depleted aerobic marine waters. Applied Environmental Microbiology, 53, 1078–87.

    CAS  Google Scholar 

  • Pomeroy, L.R. (1974) The ocean’s food web: a changing paradigm. BioScience, 24, 499–504.

    Article  Google Scholar 

  • Raskin, L., Stromley, J.K., Rittmann, B.E. and Stahl, D.A. (1994) Group-specific 16S rRNA hybridization probes to describe natural communities of methanogens. Applied Environmental Microbiology, 60, 1232–40.

    CAS  Google Scholar 

  • Revsbech, N.P. and Jorgensen, B.B. (1986) Microelectrodes: their use in microbial ecology. Advances in Microbiology and Ecology, 9, 292–352.

    Google Scholar 

  • Rittmann, B.E. and Brunner, C.W. (1984) The nonsteady-state-biofilm process for advanced organics removal. Journal of the Water Pollution Control Federation, 56, 874–80.

    CAS  Google Scholar 

  • Rittmartn, B.E. and McCarty, P.L. (1980a) Model of steady-state biofilm kinetics. Biotechnology and Bioengineering, 22, 2343–57.

    Article  Google Scholar 

  • Rittmann, B.E. and McCarty, P.L. (1980b) Evaluation of steady-state-biofilm kinetics. Biotechnology and Bioengineering, 22, 2359–73.

    Article  CAS  Google Scholar 

  • Rittmann, B.E. and McCarty, P.L. (1981) Substrate flux into biofilms of any thickness. Journal of Environmental Engineering, 107, 831–49.

    CAS  Google Scholar 

  • Rittmann, B.E. and Manem, J.A. (1992) Development and experimental evaluation of a steady-state, multi-species biofilm model. Biotechnology and Bioengineering, 39, 914–22.

    Article  PubMed  CAS  Google Scholar 

  • Rittmann, B.E., Crawford, L., Tuck, C.K. and Namkung, E. (1986) In situ determination of kinetic parameters for biofilms: isolation and characterization of oligotrophic biofilms. Biotechnology and Bioengineering, 28, 1753–60.

    Article  PubMed  CAS  Google Scholar 

  • Sáez, P.B. and Rittmann, B.E. (1988) An improved pseudo-analytical solution for steady-statebiofilm kinetics. Biotechnology and Bioengineering, 32, 379–85.

    Article  PubMed  Google Scholar 

  • Sáez, P.B, and Rittmann, B.E. (1992) Accurate pseudo-analytical solution for steady-state biofilms. Biotechnology and Bioengineering, 39, 790–3.

    Article  PubMed  Google Scholar 

  • Salvago, G., Taccani, G. and Fumagalli, G. (1994) Review of the effects of biofilms on the probability of localized corrosion of stainless steels in seawater, in Microbiologically Influence Corrosion Testing, ATM STP1232 (eds J.R. Kearns and B.J. Little), American Society for Testing and Materials, Philadelphia, PA, pp. 70–95.

    Chapter  Google Scholar 

  • Sayler, G.S. and Layton, A.C. (1990) Environmental application of nucleic acid hybridization. Annual Review of Microbiology, 44, 625–48.

    Article  PubMed  CAS  Google Scholar 

  • Smith, D.C., Simon, M., Alldredge, A.L. and Azam, F. (1992) Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution. Nature, 359, 139–42.

    Article  CAS  Google Scholar 

  • Stahl, D.A. and Amann, R. (1991) Development and application of nucleic acid probes in bacterial systematics, in Sequencing and Hybridkation Techniques in Bacterial Systematics (eds E. Stackebrandt and M. Goodfellow), John Wiley & Sons, Chichester, pp. 205–48.

    Google Scholar 

  • Stahl, D.A., Amann, R.I., Poulsen, L.K. et al. (1995) Use of fluorescent probes for determinative microscopy of methanogenic Archaea, in Archaea: A Laboratory Manual (eds F,T. Robb, K.R, Sowers, S, DasSarma et al.), Cold Spring Harbor Press, Cold Spring Harbor, NY, pp. 111–21.

    Google Scholar 

  • Stehr, G., Zörner, S., Böttcher, B. and Koops, H.P. (1995) Exopolymers: An ecological characteristic of a floc-attached, ammonia-oxidizing bacterium. Microbial Ecology, 30, 115–26.

    Article  CAS  Google Scholar 

  • Tajima, K., Ezura, Y. and Kimura, T. (1985) Studies on the taxonomy and sereology of causative organisms of fish vibriosis. Fish Pathology, 20, 131–42.

    Article  Google Scholar 

  • Turley, C.M. and Mackie, P.J. (1994) Biogeochemical significance of attached and free-living bacteria and the flux of particles in the NE Atlantic Ocean. Marine Ecology Progress Series, 115, 191–203.

    Article  Google Scholar 

  • Turley, C.M., Lochte, K. and Lampitt, R.S. (1995) Transformations of biogenic particles during sedimentation in the northeastern Atlantic. Philosophical Transactions of the Royal Society of London B, 348, 179–89.

    Article  CAS  Google Scholar 

  • Valla, S., Frydenlund, K, Coucheron, D.H. et al. (1992) Development of a gene transfer system for curing of plasmids in the marine fish pathogen Vibrio salmonicida. Applied Environmental Microbiology, 58, 1980–5.

    CAS  Google Scholar 

  • van Loosdrecht, M.C.M., van Lyklema, J., Norde, W. and Zehnder, A.J.B. (1990) Influence of interfaces on microbial activity. Microbiological Reviews, 54, 75–87.

    PubMed  Google Scholar 

  • van Loosdrecht, M.C.M., Tijhuis, L., Wijdieks, A.M.S. and Heijnen, J.J. (1995) Population distribution in aerobic biofilms on small suspended particles. Water Science and Technology, 31, 182–91.

    Google Scholar 

  • Voordouw, G., Shen, Y., Harrington, C.S. et al. (1993) Quantitative reverse sample genome probing of microbial communities and its application to oil field production water. Applied Environmental Microbiology, 59, 4101–14.

    CAS  Google Scholar 

  • Wanner, O. and Gujer, W. (1986) Multispecies biofilm model. Biotechnology and Bioengineering, 28, 314–28.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe, Y., Okabe, S., Hirata, K. and Masuda, S. (1995) Simultaneous removal of organic materials and nitrogen by micro-aerobic biofilms. Water Science and Technology, 31, 304–13.

    Article  Google Scholar 

  • Widdel, F. (1988) Microbiology and ecology of sulfate-and sulfur-reducing bacteria, in Biology of Anaerobic Microorganisms (ed. A.J.B. Zehnder), John Wiley & Sons, New York, pp. 469–585.

    Google Scholar 

  • Williamson, K. and McCarty, P.L. (1967a) A model of substrate utilization by bacterial films. Journal of the Water Pollution Control Federation, 48, 9–24.

    Google Scholar 

  • Williamson, K. and McCarty, P.L. (1967b) Verification studies of the biofilm model for bacterial substrate utilization. Journal of the Water Pollution Control Federation, 48, 281–96.

    Google Scholar 

  • Wirtel, S.A., Noguera, D.R., Kampmeier, D.T. et al. (1992) Explaining widely varying biofilm-process performance with normalized loading curves. Water and Environmental Research, 64, 706–11.

    Article  CAS  Google Scholar 

  • ZoBell, CE. (1943) The effect of solid surfaces upon bacterial activity. Journal of Bacteriology, 46, 39–56.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Brusseau, G.A., Rittmann, B.E., Stahl, D.A. (1998). Addressing the Microbial Ecology of Marine Biofilms. In: Cooksey, K.E. (eds) Molecular Approaches to the Study of the Ocean. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4928-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4928-0_24

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6067-7

  • Online ISBN: 978-94-011-4928-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics