Skip to main content

Molecular Approaches to Microbial Biomass Estimation in the Sea

  • Chapter
Molecular Approaches to the Study of the Ocean

Abstract

The marine environment is the largest contiguous habitat on Earth. It is composed of several distinct ecosystems including high-latitude (polar) zones, mid-latitude open-ocean gyres, equatorial upwelling systems and a diverse assemblage of coastal habitats (e.g. continental shelves, bays, coral reefs, mudflats and estuaries). These individual ecosystems have characteristics that collectively influence both their populations (e.g. types of organisms present, trophic structures) and their in situ rates of biogeochemical processes (e.g. primary production, respiration and nutrient cycling). This diversity makes broad generalizations about microbial processes in the sea impossible. It is also important to remember that our current understanding of ecological processes in the largest marine habitat (by volume), the deep sea, is rudimentary. An excellent example of our lack of general understanding of deep-sea processes was the unexpected discovery, in 1977, of luxuriant communities of previously unknown organisms surrounding regions of hydrothermal fluid discharge (Corliss et al., 1979). This discovery challenged our basic views on the obligate role of sunlight in global ecology, and presented a new paradigm for the existence of life in the biosphere (Karl, 1995a).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ajtay, G.L., Ketner, P. and Duvigneaud, P. (1979) Terrestrial primary production and phytomass, in The Global Carbon Cycle (eds B. Bolin, E.T. Degens, S. Kempe and P. Ketner), John Wiley & Sons, New York, pp. 129–81.

    Google Scholar 

  • Atlas, R.M. and Bartha, R. (1993) Mkrobial Ecology, 3rd edn, Benjamin/Cummings, Redwood City, CA.

    Google Scholar 

  • Azam, F. and Hodson, R.E. (1977) Dissolved ATP in the sea and its utilization by marine bacteria. Nature, 267,696–8.

    PubMed  CAS  Google Scholar 

  • Baird, B.H. and White, D.C. (1985) Biomass and community structure of the abyssal microbiota determined from the ester-linked phospholipids recovered from Venezuela Basin and Puerto Rico trench sediments. Marine Geology, 68, 217–31.

    PubMed  CAS  Google Scholar 

  • Bakken, L.R. and Olsen, R.A. (1983) Buoyant densities and dry-matter contents of microorganisms: Conversion of a measured biovolume into biomass. Applied and Environmental Microbiology, 45,1188–95.

    PubMed  CAS  Google Scholar 

  • Balkwill, D.L., Leach, F.R., Wilson, J.T., McNabb, J.F. and White, D.C. (1988) Equivalence of microbial biomass measures based on membrane lipid and cell wall components, adenosine triphosphate, and direct counts in subsurface aquifer sediments. Mkrobial Ecology, 16,73–84.

    CAS  Google Scholar 

  • Banse, K. (1977) Determining the carbon-to-chlorophyll ratio of natural phytoplankton. Marine Biology, 41,199–212.

    CAS  Google Scholar 

  • Barer, R. (1974) Microscopes, microscopy, and microbiology. Annual Review of Microbiology, 28, 371–89.

    PubMed  CAS  Google Scholar 

  • Benecke, W. (1933) Bakteriologie des Meeres (Bacteriology of the Sea) from Abderhalden’s Handbuch der Biologischen Arbeits on Methoden, Vol. DC, Westfalia-Wilhelms University, Munster, Germany, pp. 717–854. Translated and edited by E.G. Amstein and CE. ZoBell, Scripps Institution of Oceanography, La Jolla, CA.

    Google Scholar 

  • Beveridge, TJ. (1989) The structure of bacteria, in Bacteria in Nature, Vol. 3: Structure, Physiology, and Genetic Adaptability (eds J.S. Poindexter and E.R. Leadbetter), Plenum Press, New York, pp. 1–65.

    Google Scholar 

  • Bianchi, T.S., Lambert, C. and Biggs, D.C. (1995) Distribution of chlorophyll-α and phaeopigments in the northwestern Gulf of Mexico: A comparison between fluorimetric and high performance liquid chromatography measurements. Bulletin of Marine Science, 56,25–32.

    Google Scholar 

  • Bienfang, P.K. (1980) Phytoplankton sinking rates in oligotrophic waters off Hawaii, USA. Marine Biology, 61,69–77.

    Google Scholar 

  • Bird, D.F. and Kalff, J. (1984) Empirical relationships between bacterial abundance and chlorophyll concentration in fresh and marine waters. Canadian Journal of Fisheries and Aquatic Science, 41,1015–23.

    Google Scholar 

  • Bird, D.F. and Karl, D.M. (1991) Spatial patterns of glutamate and thymidine assimilation in Bransfield Strait, Antarctica during and following the austral spring bloom. Deep-Sea Research, 38,1057–75.

    Google Scholar 

  • Bjornsen, P.K. (1986) Automatic determination of bacterioplankton biomass by image analysis. Applied and Environmental Microbiology, 51, 1199–204.

    PubMed  CAS  Google Scholar 

  • Bligh, E.G. and Dyer, W.J. (1959) A rapid method of lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 35, 911–17.

    Google Scholar 

  • Bohlool, B.B. and Schmidt, E.L. (1980) The immunofluorescence approach in microbial ecology, in Advances in Microbial Ecology, Vol. 4 (ed. M. Alexander), Plenum Press, New York, pp. 203–41.

    Google Scholar 

  • Bratbak, G. and Dundas, I. (1984) Bacterial dry matter content and biomass estimations. Applied and Environmental Microbiology, 48,755–7.

    PubMed  CAS  Google Scholar 

  • Brock, T.D. (1971) Microbial growth rates in nature. Bacteriological Reviews, 35,39–58.

    PubMed  CAS  Google Scholar 

  • Bult, C.J., White, O., Olsen, G.J. et al. (1996) Complete genome sequence of the methanoganic archaeon, Methanococcus Jannaschii. Science, 273,1058–73.

    CAS  Google Scholar 

  • Cadieux, J.E., Kuzio, J., Milazzo, F.H. and Kropinski, A.M. (1983) Spontaneous release of lipopolysaccharide by Pseudomonas aeruginosa. Journal of Bacteriology, 155,817–25.

    CAS  Google Scholar 

  • Campbell, L., Nolla, H.A. and Vaulot, D. (1994) The importance of Prochlorococcus to community structure in the central North Pacific Ocean. Limnology and Oceanography, 39, 954–61.

    CAS  Google Scholar 

  • Cauwet, G. (1978) Organic chemistry of sea water particulates; concepts and developments. Oceanologica Acta, 1, 99–105.

    CAS  Google Scholar 

  • Chavez, F.P., Buck, K.R., Bidigare, R.R. et al. (1995) On the chlorophyll a retention properties of glass-fiber GF/F filters. Limnology and Oceanography, 40,428–33.

    CAS  Google Scholar 

  • Chisholm, S.W., Olson, R.J., Zettler, E.R. et al. (1988) A novel free-living prochlorophyte abundant in the oceanic euphoric zone. Nature, 334, 340–3.

    Google Scholar 

  • Christian, J.R. and Karl, D.M. (1994) Microbial community structure at the U.S.-Joint Global Ocean Flux Study Station ALOHA: Inverse methods for estimating biochemical indicator ratios. Journal of Geophysical Research, 9914 269–76.

    Google Scholar 

  • Christian, J.R. and Karl, D.M. (1995) Bacterial ectoenzymes in marine waters: Activity ratios and temperature responses in three oceanographic provinces. Limnology and Oceanography, 40,1042–9.

    CAS  Google Scholar 

  • Cole, J.J., Findlay, S. and Pace, M.L. (1988) Bacterial production in fresh and saltwater ecosystems: a cross-system overview. Marine Ecology Progress Series, 43,1–10.

    Google Scholar 

  • Corliss, J.B., Dymond, J., Gordon, L.I. et al. (1979) Submarine thermal springs on the Galapagos Rift. Science, 203,1073–33.

    PubMed  CAS  Google Scholar 

  • Cummins, C.S. (1989) Bacterial cell wall structure, in Practical Handbook in Microbiology (ed W.M. C’Leary), CRC Press, Boca Raton, FL, pp. 349–79.

    Google Scholar 

  • Cushing, D.H. and Nicholson, H.F. (1966) Method of estimating algal production rates at sea. Nature, 212,310–11.

    Google Scholar 

  • Davis, W.M. and White, D.C. (1980) Fluorometric determination of adenosine nucleotide derivatives as measures of the microfouling, detrital, and sedimentary microbial biomass and physiological status. Applied and Environmental Microbiology, 40,539–48.

    PubMed  CAS  Google Scholar 

  • DeFlaun, M.F., Paul, J.H. and Davis, D. (1986) Simplified method for dissolved DNA determination in aquatic environments. Applied and Environmental Microbiology, 52,654–9.

    PubMed  CAS  Google Scholar 

  • DeLong, E.F., Wickham, G.S. and Pace, N.R. (1989) Phylogenetic stains: ribosomal RNA-based probes for the identification of single microbial cells. Science, 243,1360–3.

    PubMed  CAS  Google Scholar 

  • DeLong, E.F., Wu, K.Y., Prezelin, B.B. and Jovine, R.V.M. (1994) High abundance of Archaea in antarctic marine picoplankton. Nature, 371, 695–7.

    PubMed  CAS  Google Scholar 

  • Dickey, T. (1990) The emergence of concurrent high-resolution physical and bio-optical measurements in the upper ocean and their applications. Reviews in Geophysics, 29, 383–413.

    Google Scholar 

  • Dickins, H.D. and van Vleet, E.S. (1992) Archaebacterial activity in the Orca Basin determined by the isolation of characteristic isopranyl ether-linked lipids. Deep-Sea Research, 39,521–36.

    CAS  Google Scholar 

  • Dobbs, F.C. and Findlay, R.H. (1993) Analysis of microbial lipids to determine biomass and detect the response of sedimentary microorganisms to disturbance, in Handbook of Methods in Aquatic Microbial Ecology (eds P.F. Kemp, B.F. Sherr, E.B. Sherr and J.J. Cole), Lewis Publishers, Boca Raton, FL, pp. 347–58.

    Google Scholar 

  • Doetsch, R.N. and Cook, T.M. (1973) Introduction to Bacteria and their Ecobiology, University Park Press, Baltimore, MD.

    Google Scholar 

  • Dowling, N.J.E., Widdel, F. and White, D.C. (1986) Phospholipid ester-linked fatty add biomarkers of acetate-oxidizing sulphate-reducers and other sulphide-forming bacteria. Journal of General Microbiology, 132,1815–25.

    CAS  Google Scholar 

  • Druffel E.R.M., Williams, P.M. and Suzuki, Y. (1989) Concentrations and radiocarbon signatures of dissolved organic matter in the Pacific Ocean. Geophysical Research Letters, 16,991–4.

    CAS  Google Scholar 

  • Ducklow, H.W. (1994) Modeling the microbial food web. Microbial Ecology, 28,303–19.

    Google Scholar 

  • Ellwood, D.C. and Tempest, D.W. (1972) Effects of environment on bacterial wall content and composition. Advances in Microbial Physiology, 7, 83–117.

    CAS  Google Scholar 

  • Eppley, R.W., Harrison, W.G., Chisholm, S.W. and Stewart, E. (1977) Particulate organic matter in surface waters off Southern California and its relationship to phytoplankton. Journal of Marine Research, 35,671–96.

    CAS  Google Scholar 

  • Evans, T.M., Schillinger, J.E. and Stuart, D.G. (1978) Rapid determination of bacteriological water quality by using Limulus lysate. Applied and Environmental Microbiology, 35,376–82.

    PubMed  CAS  Google Scholar 

  • Falkowski, P.G. (1981) Light-shade adaptation and assimilation numbers. Journal of Plankton Research, 3,203–16.

    CAS  Google Scholar 

  • Fazio, S.D., Mayberry, W.R. and White, D.C. (1979) Muramic acid assay in sediments. Applied and Environmental Microbiology, 38,349–50.

    PubMed  CAS  Google Scholar 

  • Federle, T.W., Hullar, M.A., Livingston, R.J. et al. (1983) Spatial distribution of biochemical parameters indicating biomass and community composition of microbial assemblies in estuarine mud flat sediments. Applied and Environmental Microbiology, 45,58–63.

    PubMed  CAS  Google Scholar 

  • Fellows, D.A., Karl, D.M. and Knauer, G.A. (1981) Large particle fluxes and the vertical transport of living carbon in the upper 1500 m of the northeast Pacific Ocean. Deep-Sea Research, 28A, 921–36.

    Google Scholar 

  • Ferguson, R.L. and Rublee, P. (1976) Contribution of bacteria to standing crop of coastal plankton. Limnology and Oceanography, 21,141–5.

    Google Scholar 

  • Findlay, R.H. and Dobbs, F.C. (1993) Quantitative description of microbial communities using lipid analysis, in Handbook of Methods in Aquatic Microbial Ecology (eds P.F. Kemp, B.F. Sherr, E.B. Sherr and J.J. Cole), Lewis Publishers, Boca Raton, FL, pp. 271–84.

    Google Scholar 

  • Findlay, R.H. King, G.M. and Watling, L. (1989) Efficacy of phospholipid analysis in determining microbial biomass in sediments. Applied and Environmental Microbiology, 55,2888–93.

    PubMed  CAS  Google Scholar 

  • Fuhrman, J.A. and Azam, F. (1980) Bacterioplankton secondary production estimates for coastal waters of British Columbia, Antarctica and California. Applied and Environmental Microbiology, 39,1085–95.

    PubMed  CAS  Google Scholar 

  • Gasol, J.M. and Vaqué, D. (1993) Lack of coupling between heterotrophic nanoflagellates and bacteria: A general phenomenon across aquatic systems? Limnology and Oceanography, 38, 657–65.

    Google Scholar 

  • Gee, H. (1932) Marine Bacteriology — Scope and Function (ed. C.E. ZoBell), Toronto, Canada.

    Google Scholar 

  • Gessner, M.O. and Chauvet, E. (1993) Ergosterol-to-biomass conversion factors for aquatic hyphomycetes. Applied and Environmental Microbiology, 59,502–7.

    PubMed  CAS  Google Scholar 

  • Giovannoni, S.J., Britschgi, T.B., Moyer, C.L. and Field, K.G. (1990) Genetic diversity in Sargasso Sea bacterioplankton. Nature, 345, 60–3.

    PubMed  CAS  Google Scholar 

  • Gold, T. (1992) The deep, hot biosphere. Proceedings of the National Academy of Sciences of the USA, 89,6045–9.

    PubMed  CAS  Google Scholar 

  • Gordon, D.C., Jr., Wangersky, P.J. and Sheldon, R.W. (1979) Detailed observations on the distribution and composition of particulate organic materials at two stations in the Sargasso Sea. Deep-Sea Research, 26A, 1083–92.

    Google Scholar 

  • Gordon, H.R., Clark, D.K., Mueller, J.L. and Hovis, W.A. (1980) Phytoplankton pigments from the Nimbus-7 Coastal Zone Color Scanner: Comparisons with surface measurements. Science, 210,63–6.

    PubMed  CAS  Google Scholar 

  • Gross, M.G. (1972) Oceanography: A View of the Earth, 2nd edn, Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Gurkert, J.B., Antworth, C.P., Nichols, P.D. and White, D.C. (1985) Phospholipid, ester-linked, fatty add profiles as reprodudble assays for changes in prokaryotic community structure of estuarine sediments. Federation of European Microbiology Society Microbial Ecology, 31, 147–58.

    Google Scholar 

  • Hattori, T. (1988) The Viable Count: Quantitative and Environmental Aspects, Sdence Tech Publishers, Madison, WI.

    Google Scholar 

  • Hedgpeth, J.W. (1957) Classification of marine environments, in Treatise on Marine Ecology and Paleoecology, Vol. 1: Ecology (ed. J.W. Hedgpeth), The Geological Society of America, Boulder, CO, pp. 17–27.

    Google Scholar 

  • Hedrick, D.B., Pledger, R.D., White, D.C. and Baross, J.A. (1992) In situ microbial ecology of hydrothermal vent sediments. Federation of European Microbiology Society Microbial Ecology, 101,1–10.

    Google Scholar 

  • Heldal, M., Norland, S. and Tumyr, O. (1985) X-ray microanalytic method for measurement of dry matter and elemental content of individual bacteria. Applied and Environmental Microbiology, 50,1251–7.

    PubMed  CAS  Google Scholar 

  • Hennes, K.P. and Suttle, C.A. (1995) Direct counts of viruses in natural waters and laboratory cultures by epifluorescence microscopy. Limnology and Oceanography, 40,1050–5.

    CAS  Google Scholar 

  • Hobbie, J.E., Daley, R.J. and Jasper, S. (1977) Use of Nuclepore filters for counting bacteria by fluorescence microscopy. Applied and Environmental Microbiology, 33,1225–8.

    PubMed  CAS  Google Scholar 

  • Holm-Hansen, O. (1969a) Determination of microbial biomass in ocean profiles. Limnology and Oceanography, 14,740–7.

    CAS  Google Scholar 

  • Holm-Hansen, O. (1969b) Algae: Amounts of DNA and organic carbon in single cells. Science, 163, 87–8.

    PubMed  CAS  Google Scholar 

  • Holm-Hansen, O. and Booth, C.R. (1966) The measurement of adenosine triphosphate in the ocean and its ecological significance. Limnology and Oceanography, 11,510–19.

    CAS  Google Scholar 

  • Holm-Hansen, O. and Riemann, B. (1978) Chlorophyll a determination: improvements in methodology. Oikos, 30,438–47.

    CAS  Google Scholar 

  • Holm-Hansen, O., Lorenzen, C.J., Holmes, R.W. and Strickland, J.D.H. (1965) Fluorometric determination of chlorophyll. Journal du Conseil Permanent International pour l’Exploration de la Mer, 30,3–15.

    CAS  Google Scholar 

  • Holm-Hansen, O., Sutcliffe, W.H., Jr. and Sharp, J. (1968) Measurement of deoxyribonucleic acid in the ocean and its ecological significance. Limnology and Oceanography, 13,507–14.

    CAS  Google Scholar 

  • Holm-Hansen, O., Hodson, R. and Azam, F. (1975) Applications of adenine nucleotide measurements in oceanography, in Analytical Applications of Bioluminescence and Chemi-lumi-nescence (eds E.W. Chappelle and G.I. Picciolo), NASA SP-388, Washington, D.C, pp. 75–87.

    Google Scholar 

  • Hovis, W.A., Clark, D.K., Anderson F. et al. (1980) Nimbus-7 Coastal Zone Color Scanner: System description and initial imagery. Science, 210, 60–3.

    PubMed  CAS  Google Scholar 

  • Humphries, D.W. (1969) Mensuration methods in optical microscopy. Advances in Optical and Electron Microscopy, 3,33–98.

    Google Scholar 

  • Hutchinson, G.E. (1965) The Ecological Theater and the Evolutionary Play, Yale University Press, New Haven, CT.

    Google Scholar 

  • Jannasch, H.W. and Jones, G.E. (1959) Bacterial populations in sea water as determined by different methods of enumeration. Limnology and Oceanography, 4,128–39.

    Google Scholar 

  • Jannasch, H.W. and Wirsen, C.O. (1977) Microbial life in the deep sea. Scientific American, 236, 42–52.

    PubMed  CAS  Google Scholar 

  • Jannasch, H.W. and Wirsen, C.O. (1979) Chemosynthetic primary production at East Pacific sea floor spreading centers. BioScience, 29,592–8.

    CAS  Google Scholar 

  • Jay, J.M. (1977) The Limulus lysate endotoxin assay as a test of microbial quality of ground beef. Journal of Applied Bacteriology, 43,99–109.

    Google Scholar 

  • Jensen, V. (1968) The plate count technique, in Ecology of Soil Bacteria (eds T.R.G. Gray and D. Parkinson), University of Toronto Press, Toronto, Canada, pp. 158–70.

    Google Scholar 

  • Johnson, B.D. and Cooke, R.C. (1980) Organic particle and aggregate formation from bubble dissolution. Limnology and Oceanography, 25, 653–61.

    Google Scholar 

  • Johnson, K.M., King, A.E. and Sieburth, J.McN. (1985) Coulometric TCO2 analysis for marine studies; An introduction. Marine Chemistry, 16, 61–82.

    CAS  Google Scholar 

  • Johnson, K.M., Sieburth, J.McN., Williams, P.J.LeB. and Brandstrom, L. (1987) Coulometric total carbon dioxide analysis for marine studies: Automation and calibration. Marine Chemistry, 21,117–33.

    CAS  Google Scholar 

  • Jorgensen, J.H., Carvajal, H.F., Chipps, B.E. and Smith, R.F. (1973) Rapid detection of gramnegative bacteria by use of the Limulus endotoxin assay. Applied Microbiology, 26,38–42.

    PubMed  CAS  Google Scholar 

  • Karl, D.M. (1980) Cellular nucleotide measurements and applications in microbial ecology. Microbiological Reviews, 44,739–96.

    PubMed  CAS  Google Scholar 

  • Karl, D.M. (1981) Simultaneous rates of ribonudeic acid and deoxyribonucleic add syntheses for estimating growth and cell division of aquatic microbial communities. Applied and Environmental Microbiology, 42,802–10.

    PubMed  CAS  Google Scholar 

  • Karl, D.M. (1982) Microbial transformations of organic matter at oceanic interfaces: A review and prospectus. EOS, Transactions of the American Geophysical Union, 63,138–40.

    Google Scholar 

  • Karl, D.M. (1985) Effects of temperature on the growth and viability of hydrothermal vent microbial communities. Biological Society of Washington Bulletin, 6,345–53.

    Google Scholar 

  • Karl, D.M. (1986) Determination of in situ micro-Mai biomass, viability, metabolism, and growth, in Bacteria in Nature, Vol. 2: Methods and Special Applications in Bacterial Ecology (eds J.S. Poindexter and E.R. Leadbetter), Plenum Press, New York, pp. 85–176.

    Google Scholar 

  • Karl, D.M. (1987) Bacterial production at deep-sea hydrothermal vents and cold seeps: Evidence for chemosynthetic primary production, in Ecology of Microbial Communities (eds M. Fletcher, T.R.G. Gray and J.G. Jones), Cambridge University Press, Cambridge, pp. 319–60.

    Google Scholar 

  • Karl, D.M. (1994) Accurate estimation of microbial loop processes and rates. Microbial Ecology, 28, 147–50.

    Google Scholar 

  • Karl, D.M. (ed.) (1995a) The Microbiology of Deep-Sea Hydrothermal Vents, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Karl, D.M. (1995b) Ecology of free-living, hydrothermal vent microbial communities, in The Microbiology of Deep-Sea Hydrothermal Vents (ed. D.M. Karl), CRC Press, Boca Raton, FL, pp. 35–124.

    Google Scholar 

  • Karl, D.M. and Bailiff, M.D. (1989) The measurement and distribution of dissolved nucleic acids in aquatic environments. Limnology and Oceanography, 34,543–58.

    CAS  Google Scholar 

  • Karl, D.M. and Bossard, P. (1985) Measurement and significance of ATP and adenine nucleotide pool turnover in microbial cells and environmental samples. Journal of Microbiological Methods, 3,125–39.

    CAS  Google Scholar 

  • Karl, D.M. and Holm-Hansen, O. (1978) Methodology and measurement of adenylate energy charge ratios in environmental samples. Marine Biology, 48,185–97.

    CAS  Google Scholar 

  • Karl, D.M. and Knauer, G.A. (1984) Vertical distribution, transport, and exchange of carbon in the northeast Pacific Ocean: evidence for multiple zones of biological activity. Deep-Sea Research, 31,221–43.

    CAS  Google Scholar 

  • Karl, D.M. and Lukas, R. (1996) The Hawaii Ocean Time-series (HOT) program: Background, rationale and field implementation. Deep-Sea Research, 43,129–56.

    CAS  Google Scholar 

  • Karl, D.M. and Tien, G. (1991) Bacterial abundances during the 1989–1990 austral summer phytoplankton bloom in the Gerlache Strait. Antarctic Journal of the United States, 26,147–9.

    Google Scholar 

  • Karl, D.M. and Winn, C.D. (1984) Adenine metabolism and nucleic acid synthesis: Applications to microbiological oceanography, in Heterotrophic Activity in the Sea (eds J.E. Hobbie, and P.J. Williams), Plenum Publishing, New York, pp. 197–215.

    Google Scholar 

  • Karl, D.M., Wirsen, C.O. and Jannasch, H.W. (1980) Deep-sea primary production at the Galapagos hydrothermal vents. Science, 207, 1345–7.

    CAS  Google Scholar 

  • Karl, D.M., Jones, D.R., Novitsky, J.A. et al. (1987) Specific growth rates of natural microbial communities measured by adenine nucleotide pool turnover. Journal of Microbiological Methods, 6,221–35.

    CAS  Google Scholar 

  • Karl, D.M., Knauer, G.A. and Martin, J.H. (1988a) Downward flux of particulate organic matter in the ocean: a particle decomposition paradox. Nature, 332,438–41.

    Google Scholar 

  • Karl, D.M., Taylor, G.T., Novitsky, J.A. et al. (1988b) A microbiological study of Guaymas Basin high temperature hydrothermal vents. Deep-Sea Research, 35,777–91.

    CAS  Google Scholar 

  • Karl, D.M., Harrison, W.G., Dore, J. et al. (1991) Major bioelements, in Marine Particles: Analysis and Characterization (eds D.C. Hurd and D.W. Spencer), American Geophysical Union, Washington, D.C, pp. 33–42.

    Google Scholar 

  • Karl, D.M., Christian, J.R., Dore, J.E. et al. (1996) Seasonal and interannual variability in primary production and particle flux at Station ALOHA. Deep-Sea Research II, 43,539–68.

    CAS  Google Scholar 

  • Kemp, P.F., Sherr, B.F., Sherr, E.B. and Cole, J.J. (eds) (1993) Handbook of Methods in Aquatic Microbial Ecology, Lewis Publishers, Boca Raton, FL.

    Google Scholar 

  • Kepkay, P.E. and Johnson, B.D. (1988) Microbial response to organic particle generation by surface coagulation in seawater. Marine Ecology Progress Series, 48,193–8.

    Google Scholar 

  • Kepkay, P.E. and Johnson, B.D. (1989) Coagulation of bubbles allows microbial respiration of oceanic dissolved organic carbon. Nature, 338, 63–5.

    CAS  Google Scholar 

  • Kiefer, D.A. (1973) The in vivo measurement of chlorophyll by fluorometry, in Estuarine Microbial Ecology (eds L.H. Stevenson and R.R. Colwell), University of South Carolina Press, Columbia, SC, pp. 421–30.

    Google Scholar 

  • King, J.D. and White, D.C. (1977) Muramic acid as a measure of microbial biomass in estuarine and marine samples. Applied and Environmental Microbiology, 33,777–83.

    PubMed  CAS  Google Scholar 

  • Kirchman, D.L, Sigda, J., Kapuscinski, R. and Mitchell, R. (1982) Statistical analysis of the direct count method for enumerating bacteria. Applied and Environmental Microbiology, 43, 376–82.

    Google Scholar 

  • Kirchman, D.L., Suzuki, Y., Garside, C. and Ducklow, H.W. (1991) Bacterial oxidation of dissolved organic carbon in the north Atlantic Ocean during the spring bloom. Nature, 352, 612–14

    CAS  Google Scholar 

  • Kohlmeyer, J. and Kohlmeyer, E. (1979) Marine Mycology: The Higher Fungi, Academic Press, New York.

    Google Scholar 

  • Koike, I., Shigemitsu, H., Kerauchi, T. and Kogure, K. (1990) Role of submicrometer particles in the ocean. Nature, 345,242–4.

    Google Scholar 

  • Kormondy, E.J. (1969) Concepts of Ecology, Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Kriss, A.E. (1963) Marine Microbiology [Deep Sea], Oliver & Boyd, Edinburgh.

    Google Scholar 

  • Kubitschek, H.E. (1969) Counting and sizing microorganisms with the Coulter counter, in Methods in Microbiology, Vol. 1 (eds R. Norris and D.W. Ribbons), Academic Press, New York, pp. 593–610.

    Google Scholar 

  • Laborde, P. (1972) PhD thesis. Université d’Aix-Marseille, Marseille, France.

    Google Scholar 

  • Latasa, M., Bidigare, R.R., Ondrusek, M.E., Kennicutt II, M.C. (1996) HPLC analysis of algal pigments: a comparison exercise among laboratories and recommendations for improved analytical performance. Marine Chemistry, 51,315–24.

    CAS  Google Scholar 

  • Laws, E.A., Karl, D.M., Redalje, D.G. et al. (1983) Variability in ratios of phytoplankton carbon and RNA to ATP and Chl α in batch and continuous cultures. Journal of Phycology, 19,439–45.

    CAS  Google Scholar 

  • Lechevalier, M.P. (1989) Lipids in bacterial taxonomy, in Practical Handbook of Microbiology (ed. W. O’Leary), CRC Press, Boca Raton, FL, pp. 455–561.

    Google Scholar 

  • Lee, C., Howarth, R.W. and Howes, B.W. (1980) Sterols in decomposing Spartina altemiflora and the use of ergosterol in estimating the contribution of fungi to detrital nitrogen. Limnology and Oceanography, 25,290–303.

    CAS  Google Scholar 

  • Leftley, J.W., Bonin, D.J. and Maestrini, S.Y. (1983) Problems in estimating marine phytoplankton growth, productivity and metabolic activity in nature: an overview of methodology. Oceanography and Marine Biology Annual Review, 21,23–66.

    CAS  Google Scholar 

  • Letelier, R.M., Bidigare, R.R., Hebel, D.V. et al (1993) Temporal variability of phytoplankton community structure based on pigment analysis. Limnology and Oceanography, 38,1420–37.

    Google Scholar 

  • Levin, G.V., Clendenning, J.R., Chappelle, E.W. et al. (1964) A rapid method for detection of microorganisms using the ATP assay. BioScience, 14,37–8.

    Google Scholar 

  • Levin, J. and Bang, F.B. (1964) The role of endo-toxin in the extraceEular coagulogen of Limulus blood. Bulletin of the Johns Hopkins Hospital, 115, 265–74.

    PubMed  CAS  Google Scholar 

  • Levin, S.A. (1992) The problem of pattern and scale in ecology. Ecology, 73,1943–67.

    Google Scholar 

  • Lewin, R.A. (1974) Enumeration of bacteria in sea water. Internationale Revue der gesamtem Hydrobiologie, 59(5), 611–19.

    Google Scholar 

  • Longhurst, A.R. and Harrison, W.G. (1989) The biological pump: Profiles of plankton production and consumption in the upper ocean. Progress in Oceanography, 22,47–123.

    Google Scholar 

  • Lorenzen, C.J. (1966) A method for the continuous measurement of in vivo chlorophyll concentration. Deep-Sea Research, 13,223–7.

    Google Scholar 

  • Lorenzen, C.F. (1967) Determination of chlorophyll and phaeopigments: spectrophotometric equations. Limnology and Oceanography, 12,348–56.

    Google Scholar 

  • Luria, S.E. (1960) The bacterial protoplasm: Composition and organization, in The Bacteria, Vol. 1 (eds I.C. Gunsalus and R.Y. Stanier), Academic Press, New York, pp. 1–34.

    Google Scholar 

  • McCave, IN. (1975) Vertical flux of particles in the ocean. Deep-Sea Research, 22,491–502.

    Google Scholar 

  • Maeda, M. and Taga, N. (1979) Chromogenic assay method of lipopolysaccharide (LPS) for evaluating bacterial standing crop in seawater. Journal of Applied Bacteriology, 47,175–82.

    PubMed  CAS  Google Scholar 

  • Maki, J.S., Sierszen, M.E. and Remsen, C.C. (1983) Measurements of dissolved adenosine triphosphate in Lake Michigan. Canadian Journal of Fisheries and Aquatic Science, 40,542–7.

    CAS  Google Scholar 

  • Mantoura, R. and Llewellyn, C. (1983) The rapid determination of algal chlorophyll and carotenoid pigments and their breakdown products in natural waters by reverse-phase high-performance liquid chromatography. Analytica Chimica Acta, 151,297–314.

    CAS  Google Scholar 

  • Maranger, R. and Bird, D.F. (1995) Viral abundance in aquatic systems: a comparison between marine and fresh waters. Marine Ecology Progress Series, 121,217–26.

    Google Scholar 

  • Martin, J.H., Knauer, G.A., Karl, D.M and Broenkow, W.W. (1987) VERTEX: Carbon cycling in the northeast Pacific. Deep-Sea Research, 34,267–85.

    CAS  Google Scholar 

  • Mayer, H., Tharanathan, R.N. and Weckesser, J. (1985) Analysis of lipopolysaccharides of gram-negative bacteria, in Methods in Microbiology, Vol. 18 (ed. G. Gottschalk), Academic Press, London, pp. 157–207.

    Google Scholar 

  • Millar, W.N. and Casida, L.E. (1970) Evidence for muramic acid in soil. Canadian Journal of Microbiology, 16,299–304.

    PubMed  CAS  Google Scholar 

  • Mimura, T. and Romano, J.-C. (1985) Muramic acid measurements for bacterial investigations in marine environments by high-pressure liquid chromatography. Applied and Environmental Microbiology, 50,229–37.

    PubMed  CAS  Google Scholar 

  • Monger, B.C. and Landry, M.R. (1993) Flow cytometric analysis of marine bacteria with Hoechst 33342. Applied and Environmental Microbiology, 59,905–11.

    PubMed  CAS  Google Scholar 

  • Moriarty, D.J.W. (1975) A method for estimating the biomass of bacteria in aquatic sediments and its application to trophic studies. Oecologia, 20,219–29.

    Google Scholar 

  • Moriarty, D.J.W. (1977) Improved method using muramic acid to estimate biomass of bacteria in sediments. Oecologia, 26,317–23.

    Google Scholar 

  • Moriarty, D.J.W. (1978) Estimation of bacterial biomass in water and sediments using muramic acid, in Microbial Ecology (eds M.W. Loutit and J.A.R, Miles), Springer-Verlag, Heidelberg, pp. 31–3.

    Google Scholar 

  • Moriarty, D.J.W. (1983) Measurements of muramic acid in marine sediments by high performance liquid chromatography. Journal of Microbiological Methods, 1,111–17.

    CAS  Google Scholar 

  • Moriarty, D.J.W. and Hayward, A.C. (1982) Ultrastructure of bacteria and the proportion of gram-negative bacteria in marine sediments. Microbial Ecology, 8,1–14.

    Google Scholar 

  • Muldrow, L.L., Tyndall R.L. and Fliermans, C.B. (1982) Application of flow cytometry to studies of pathogenic free-living amoebae. Applied and Environmental Microbiology, 44,1258–69.

    PubMed  CAS  Google Scholar 

  • Mullin, M.M., Sloan, P.R. and Eppley, R.W. (1966) Relationship between carbon content, cell volume, and area in phytoplankton. Limnology and oceanography, 11,307–11.

    Google Scholar 

  • Murray, A., Gibbs, C., Longmore, A. and Flett, D. (1986) Determination of chlorophyll in marine waters: intercomparison of a rapid HPLC method with full HPLC., spectrophotometric and fluorometric methods. Marine Chemistry, 19,211–27.

    CAS  Google Scholar 

  • Nakamura, S., Morita, T., Iwanaga, S. et al. (1977) A sensitive substrate for the clotting enzyme in horseshoe crab hemocytes. Journal of Biochemistry, 81,1567–9.

    PubMed  CAS  Google Scholar 

  • Nawrocki, M.P. and Karl, D.M. (1989) Dissolved ATP turnover in the Bransfield Strait, Antarctica during a spring bloom. Marine Ecology Progress Series, 57,35–44.

    CAS  Google Scholar 

  • Nelson, J.R. (1993) Rates and possible mechanism of light-dependent degradation of pigments in detritus derived from phytoplankton. Journal of Marine Research, 51,155–79.

    CAS  Google Scholar 

  • Newell, S.Y. (1993) Membrane-containing fungal mass and fungal specific growth rate in natural samples, in Handbook of Methods in Aquatic Microbial Ecology (eds P.R Kemp, B.F. Sherr, E.B. Sherr and J.J. Cole), Lewis Publishers, Boca Raton, FL, pp. 579–86.

    Google Scholar 

  • Newell, S.Y. and Fallon, R.D. (1991) Toward a method for measuring instantaneous fungal growth rates in field samples. Ecology, 72, 1547–59.

    Google Scholar 

  • Newell, S.Y. and Statzell-Tallman, A. (1982) Factors for conversion of fungal biovolume values to biomass, carbon and nitrogen: Variation with mycelial ages, growth conditions, and strains of fungi from a salt marsh. Oikos, 39,261–8.

    Google Scholar 

  • Newell, S.Y., Miller, J.D. and Fallon, R.D. (1987) Ergosterol content of salt-marsh fungi: Effect of growth conditions and mycelial age. Mycologia, 79,688–95.

    CAS  Google Scholar 

  • Newell, S.Y., Arsuffi, T.L. and Fallon, R.D. (1988) Fundamental procedures for determining ergosterol content of decaying plant material by liquid chromatography. Applied and Environmental Microbiology, 54,1876–9.

    PubMed  CAS  Google Scholar 

  • Nichols, P.D., Shaw, P.M., Mancuso, C.A. and Franzmann, P.D. (1993) Analysis of archaeal phospholipid-derived di-and tetraether lipids by high temperature capillary gas chromatography. Journal of Microbiological Methods, 18,1–9.

    CAS  Google Scholar 

  • Norland, S. (1993) The relationship between biomass and volume of bacteria, in Handbook of Methods in Aquatic Microbial Ecology (eds P.F. Kemp. B.F. Sherr, E.B. Sherr and J.J. Cole), Lewis Publishers, Boca Raton, FL, pp. 303–7.

    Google Scholar 

  • Nylund, J.-E. and Wallander, H. (1992) Ergosterol analysis as a means of quantifying mycorrhizal biomass, in Methods in Microbiology, Vol. 24: Techniques for the Study of Mycorrhiza (eds J.R. Norris, D.J. Read and A.K. Varma), Academic Press, New York, pp. 77–88.

    Google Scholar 

  • Ondrusek, M.E., Bidigare, R.R., Sweet, S.T. et al. (1991) Distribution of phytoplankton pigments in the North Pacific Ocean in relation to physical and optical variability, Deep-Sea Research, 38, 243–66.

    CAS  Google Scholar 

  • Parker, J.H., Smith, G.A., Fredrickson, H.L. et al. (1982) Sensitive assay, based on hydroxyfatty acids from lipopolysaccharide lipid A, for gram-negative bacteria in sediments. Applied and Environmental Microbiology, 44,1170–7.

    PubMed  CAS  Google Scholar 

  • Finckney, J., Papa, R. and Zingmark, R. (1994) Comparison of high-performance liquid Chromatographic, spectrophotometric, and fluoro-metric methods for determining chlorophyll α concentrations in estuarine sediments. Journal of Microbiological Methods, 19,59–66.

    Google Scholar 

  • Porter, K. and Feig, Y.S. (1980) The use of DAPI for identifying and counting aquatic microflora. Limnology and Oceanography, 25,943–8.

    Google Scholar 

  • Post, W.M., Peng, T.-H., Emanuel, W.R. et al, (1990) The global carbon cycle. American Scientist, 78, 310–26.

    Google Scholar 

  • Press, F. and Siever, R. (1978) Earth, 2nd edn, W.H. Freeman and Co., San Francisco, CA.

    Google Scholar 

  • Redalje, D.G. (1983) Phytoplankton carbon biomass and specific growth rates determined with the labeled chlorophyll α technique. Marine Ecology Progress Series, 11,217–25.

    Google Scholar 

  • Redalje, D.G. and Laws, E.A. (1981) A new method for estimating phytoplankton growth rates and carbon biomass. Marine Biology, 62,73–9.

    CAS  Google Scholar 

  • Riemann, B. (1979) The occurrence and ecological importance of dissolved ATP in fresh water. Freshwater Biology, 9,481–90.

    CAS  Google Scholar 

  • Romanenko, V.I. and Dobrynin, E.G. (1978) Specific weight of the dry biomass of pure bacteria cultures. Microbiology, 47,220–1.

    Google Scholar 

  • Saddler, J.N. and Wardlaw, A.C. (1980) Extraction, distribution and biodegradation of bacterial lipopolysaccharides in estuarine sediments. Antonie van Leeuwenhoek, 46,27–39.

    PubMed  CAS  Google Scholar 

  • Schlee, S. (1973) The Edge of an Unfamiliar World: A History of Oceanography, E.P. Dutton & Co., New York.

    Google Scholar 

  • Schleifer, K.H. (1985) Analysis of the chemical composition and primary structure of murein, in Methods in Microbiology, Vol. 18 (ed. G. Gottschalk), Academic Press, London, pp. 123–55.

    Google Scholar 

  • Seitz, L.M., Mohr, H.E., Burroughs, R. and Sauer, D.B. (1977) Ergosterol as an indicator of fungal invasion in grains. Cereal Chemistry, 54, 1207–17.

    CAS  Google Scholar 

  • Sharp, J.H., Benner, R., Bennett, L. et al. (1995) Analyses of dissolved organic carbon in sea-water: The JGOFS EqPac methods comparison. Marine Chemistry, 48,91–108.

    CAS  Google Scholar 

  • Sieracki, M.E., Johnson, P.W. and Sieburth, J. McN. (1985) The detection, enumeration and sizing of aquatic bacteria by image analysis epifluorescence microscopy. Applied and Environmental Microbiology, 49,799–810.

    PubMed  CAS  Google Scholar 

  • Sledjeski, D.D. and Weiner, R.M. (1991) Hyphomonas spp., Shewanella spp., and other marine bacteria lack heterogeneous (ladderlike) Epopolysaccharides. Applied and Environmental Microbiology, 57,2094–6.

    PubMed  CAS  Google Scholar 

  • Smayda, T.J. (1970) The suspension and sinking of phytoplankton in the sea. Oceanography and Marine Biology Annual Review, 8,353–414.

    Google Scholar 

  • Smayda, T.J. (1971) Normal and accelerated sinking of phytoplankton in the sea. Marine Geology, 11,105–22.

    Google Scholar 

  • Stanier, R.Y., Ingraham, J.L., Wheelis, M.L. and Painter, P.R. (1986) The Microbial World, 5th edn, Prentice-Hall, Englwood Cliffs, NJ.

    Google Scholar 

  • Stanley, P.M., Gage, M.A. and Schmidt, E.L. (1979) Enumeration of specific populations by immuno-fluorescence, in Native Aquatic Bacteria: Enumeration, Activity and Ecology (eds J.W. Costerton and R.R Colwell), American Society for Testing and Materials, Baltimore, MD, pp. 46–55.

    Google Scholar 

  • Strickland, J.D.H. (1968) Continuous measurement of in viva chlorophyll α: Precautionary note. Deep-Sea Research, 15,225–7.

    Google Scholar 

  • Strickland, J.D.H. and Parsons, T.R. (1972) A Practical Handbook of Seawater Analysis, Fisheries Research Board of Canada, Ottawa.

    Google Scholar 

  • Strugger, S. (1948) Fluorescence microscope examination of bacteria in soil. Canadian Journal of Research Section C, 26,188–93.

    CAS  Google Scholar 

  • Suzuki, M.T., Sherr, E.B. and Sherr, B.F. (1993) DAPI direct counting underestimates bacterial abundances and average cell size compared to AO direct counting. Limnology and Oceanography, 38,1566–70.

    Google Scholar 

  • Sverdrup, H.U. (1953) On conditions for the vernal blooming of phytoplankton. Journal du Conseil Permanent International pour l’Exploration de la Mer, 18,287–95.

    Google Scholar 

  • Sverdrup, H.U., Johnson, M.W. and Fleming, R.H. (1946) The Oceans, Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Taylor, G.T. and Karl, D.M. (1991) Vertical fluxes of biogenic particles and associated biota in the eastern North Pacific: Implications for biogeochemical cycling and productivity. Global Biogeochemical Cycles, 5,289–303.

    Google Scholar 

  • Tien, G., Burgett, J., Dore, J. et al. (1992) Seasonal variability in microbial biomass in the Gerlache Strait A feast or famine existence. Antarctic Journal of the United States, 27,166–7.

    Google Scholar 

  • Toggweiler, J.R. (1989) Is the downward dissolved organic matter (DOM) flux important in carbon transport?, in Productivity of the Ocean: Present and Past (eds W.H. Berger, V.S. Smetacek and G. Wefer), John Wiley & Sons, New York, pp. 65–83.

    Google Scholar 

  • Tornabene, T.G. and Langworthy, T.A. (1979) Diphytanyl and tetraphytanyl glycerol ether lipids of methanogenic Archaebacteria. Science, 203,51–3.

    PubMed  CAS  Google Scholar 

  • Tunlid, A., Ringelberg, D., Phelps, T.J. et al. (1989) Measurement of phospholipid fatty acids at picomolar concentrations in biofilms and deep subsurface sediments using gas chromatography and chemical ionization mass spectrometry. Journal of Microbiological Methods, 10, 139–53.

    CAS  Google Scholar 

  • Turley, C.M. (1993) Direct estimates of bacterial numbers in seawater samples without incurring cell loss due to sample storage, in Handbook of Methods in Aquatic Microbial Ecology (eds P.F. Kemp, B.F. Sherr, E.B. Sherr and J.J. Cole), Lewis Publishers, Boca Raton, FL, pp. 143–7.

    Google Scholar 

  • van Es, F.B. and Meyer-Reil, L.-A. (1982) Biomass and metabolic activity of heterotrophic marine bacteria, in Advances in Microbial Ecology, Vol. 6 (ed. K.C. Marshall), Plenum Press, New York, pp. 111–70.

    Google Scholar 

  • van Leeuwenhoek, A. (1677) Observations concerning little animals observed in rain, well, sea and snow water. Philosophical Transactions of the Royal Society of London, 11,821–31.

    Google Scholar 

  • Venrick, E.L. (1990) Mesoscale patterns of chlorophyll α in the Central North Pacific. Deep-Sea Recearch, 37,1017–31.

    CAS  Google Scholar 

  • Venrick, EX., McGowan, J.A., Cayan, D.R. and Hayward, T.L. (1987) Climate and chlorophyll α: Long-term trends in the central North Pacific Ocean. Science, 238,70–2.

    PubMed  CAS  Google Scholar 

  • Vézina, A.F. and Platt, T. (1988) Food web dynamics in the ocean. I. Best-estimates of flow networks using inverse methods. Marine Ecology Progress Series, 42,269–87.

    Google Scholar 

  • Vishniac, W. (1971) Limits of microbial productivity in the ocean, in Microbes and Biological Productivity, 21st symposium of the Society for General Microbiology (eds D.E. Hughes and A.H. Rose), Cambridge University Press, Cambridge, pp. 355–66.

    Google Scholar 

  • Volk, T. and Hoffert, M.I. (1985) Ocean carbon pumps: Analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes, in The Carbon Cycle and Atmospheric CO 2: Natural Variations Archean to Present (eds E.T. Sundquist and W.S. Broecker), American Geophysical Union, Washington, D.C., pp. 99–110.

    Google Scholar 

  • Wallner, G., Amann, R. and Beisker, W. (1993) Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms, Cytometry, 14,136–43.

    PubMed  CAS  Google Scholar 

  • Waterbury, J.B., Watson, S.W., Guillard, R.R.L. and Brand, L.E. (1979) Widespread occurrence of a unicellular, marine, planktonic cyanobacterium. Nature, 277,293–4.

    Google Scholar 

  • Watson, S.W. and Hobbie, J.E. (1979) Measurement of bacterial biomass as lipopolysaccharide, in Native Aquatic Bacteria: Enumeration, Activity, and Ecology (eds J.W. Costerton and R.R. Colwell), American Society for Testing and Materials, Philadelphia, PA, pp. 82–8.

    Google Scholar 

  • Watson, S.W., Novitsky, T.J., Quinby, H.L. and Valois, F.W. (1977) Determination of bacterial number and biomass in the marine environment. Applied and Environmental Microbiology, 33,940–6.

    PubMed  CAS  Google Scholar 

  • Weckesser, J., Drews, G. and Mayer, H. (1979) Lipopolysaccharides of photosynthetic prokaryotes. Annual Review of Microbiology, 33,215–39.

    PubMed  CAS  Google Scholar 

  • Wetzel, R.G., Rich, P.H., Miller, M.C. and Allen, H.L. (1972) Metabolism of dissolved and particulate detrital carbon in a temperate hard-water lake. Memoirs of the Institute of Italian Idrobilogy, 29(Suppl.), 185–243.

    Google Scholar 

  • White, D.C. (1983) Analysis of microorganisms in terms of quantity and activity in natural environments, in Microbes in Their Natural Environments, Symposium 34 (eds J.H. Slater, R. Whittenbury and J.W.T. Wimpenny), Society for General Microbiology, Cambridge University Press, Cambridge, pp. 37–66.

    Google Scholar 

  • White, D.C. (1994) Is there anything else you need to understand about the microbiota that cannot be derived from analysis of nucleic acids? Microbial Ecology, 28,163–6

    CAS  Google Scholar 

  • White, D.C., Bobbie, R.J., Morrison, S.J. et al. (1977) Determination of microbial activity of estuarine detritus by relative rates of lipid biosynthesis. Limnology and Oceanography, 22,1089–99.

    CAS  Google Scholar 

  • White, D.C., Bobbie, R.J., Herron, J.S. et al. (1979a) Biochemical measurements of microbial mass and activity from environmental samples, in Native Aquatic Bacteria: Enumeration, Activity and Ecology (eds J.W. Costerton and R.R. Colwell), American Society for Testing and Materials, Baltimore, MD, pp. 69–81.

    Google Scholar 

  • White, D.C., Davis, W.M., Nickels, J.S. et al. (1979b) Determination of the sedimentary microbial biomass by extractible lipid phosphate. Oecologia, 40,51–62.

    Google Scholar 

  • Williams, P.M. and Druffel, E.R.M. (1987) Radiocarbon in dissolved organic matter in the central North Pacific Ocean. Nature, 330,246–8.

    CAS  Google Scholar 

  • Winn, C.D. and Karl, D.M. (1984) Microbial productivity and community growth rate estimates in the tropical North Pacific Ocean. Biological Oceanography, 3,123–45.

    Google Scholar 

  • Winn, C.D. and Karl, D.M. (1986) Diel nucleic acid synthesis and particulate DNA concentrations: Conflicts with division rate estimates by DNA accumulation. Limnology and Oceanography, 31, 637–45.

    CAS  Google Scholar 

  • Winn, C.D., Campbell, L., Christian, J.R. et al. (1995) Seasonal variability in the phytoplankton community of the North Pacific Subtropical Gyre. Global Biogeochemical Cycles, 9,605–20.

    CAS  Google Scholar 

  • Woese, C.R. (1994) There must be a prokaryote somewhere: Microbiology’s search for itself. Microbiological Reviews, 58,1–9.

    PubMed  CAS  Google Scholar 

  • Yentsch, C.M., Horan, P.K., Muirhead, K. et al. (1983) How cytometry and cell sorting: A powerful technique with potential applications in aquatic sciences. Limnology and Oceanography, 28,1275–80.

    Google Scholar 

  • Yoder, J.A., McClain, C.R., Feldman, G.C. and Esaias, W.E. (1993) Annual cycles of phytoplankton chlorophyll concentrations in the global ocean: A satellite view. Global Biogeochemical Cycles, 7,181–94.

    Google Scholar 

  • Zweifel, U.L. and Hagström, A. (1995) Total counts of marine bacteria include a large fraction of non-nucleoid-containing bacteria (ghosts). Applied and Environmental Microbiology, 61, 2180–5.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Karl, D.M., Dobbs, F.C. (1998). Molecular Approaches to Microbial Biomass Estimation in the Sea. In: Cooksey, K.E. (eds) Molecular Approaches to the Study of the Ocean. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4928-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4928-0_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6067-7

  • Online ISBN: 978-94-011-4928-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics