Skip to main content

Application of Microorganisms to Seeds

  • Chapter
Formulation of Microbial Biopesticides

Abstract

Application of beneficial microorganisms to seed for use in agriculture, forestry and horticulture has been under intensive investigation for many years (118). Microorganisms can be applied to perform specific functions, notably nitrogen fixation, phosphate solubilization, plant-growth promotion, biological control of plant pathogens and, more recently, biological control of pests (recent reviews include Paau, 1988;49;63;122;63;147;22; 110). Applying microorganisms to seed is an attractive proposition because of the combination of specific effect and limited environmental 256 Application of microorganisms to seeds impact (see also section5.3.1). In the familiar adage, seed treatment has the potential to deliver agents “in the right amount, at the right place, and at the right time”. With increasing public awareness of the potential environmental and health hazards of both agrochemicals and fertilizers, and the advances in biotechnology to improve the performance of microbial products, application of microorganisms to seeds is likely to increase in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, P. B. (1990) The potential of mycoparasites for biological control of plant diseases. Ann. Rev. Phytopathol. 28, 59–72.

    CAS  Google Scholar 

  • Al-Hamdani, A. M., Lutchmeah, R. S. and Cooke, R. C. (1983) Biological control of Pythium ultimum-induced damping-off by treating cress seed with the mycoparasite Pythium oligandrum. Plant Pathol. 32, 449–54.

    Google Scholar 

  • Anon. (1991) Methods of Testing Legume Inoculant and Pre-inoculated Seed Products. Fertilizers Act, Section23, Regulations, Canadian Department of Agriculture, pp. M1–14.

    Google Scholar 

  • Anon. (1993) Kodiak Biological Fungicide Technical Bulletin, Gustafson Inc., Plano.

    Google Scholar 

  • Anyango, B., Keya, S. O. and Balasundarum, V. R. (1985) Assessment of filter-mud as a carrier for legume seed inoculants: physico-chemical properties and Rhizobium phaseoli survivalin Biological Nitrogen Fixation in Africa (eds H. Ssali and S. O. Keya), MIRCEN, Nairobi, pp. 180–96.

    Google Scholar 

  • Bashan, Y. (1986) Alginate beads as synthetic inoculant carriers for slow release of bacteria that affect plant growth. Appl. Environ. Microbiol. 51, 1089–98.

    PubMed  CAS  Google Scholar 

  • Beagle-Ristaino, J. E. and Papavizas, G. C. (1985) Biological control of Rhizoctonia stem canker and black scurf of potato. Phytopathol. 75, 560–4.

    Google Scholar 

  • Berg, R. K. Jr, Jawson, M. D., Franzluebbers, A. J. and Kubik, K. K. (1989) Bradyrhizobium japonicum inoculation and seed priming for fluid-drilled soybean. Soil Sci. Soc. Amer. J. 53, 1712–7.

    Google Scholar 

  • Bhatnagar, R. S., Jauhri, R. S. and Iswaran K. (1982) Survival of Rhizobium japonicum in charcoal bentonite based carrier. Curr Sci. 51,430–32.

    Google Scholar 

  • Bissonette, N., Lalande, R. and Bordeleau, L. M. (1986) Large-scale production of Rhizobium meliloti on whey. App. Environ. Microbiol. 52,838–41.

    Google Scholar 

  • Brockwell, J. (1982) Inoculation methods for field experimenters and farmers, in Nitrogen Fixation in Legumes (ed. J. M. Vincent), Academic Press, Sydney, pp. 211–26.

    Google Scholar 

  • Brockwell, J., Herridge, D. F., Roughley, R. J. et al. (1975) Studies on seed pelleting as an aid to legume inoculation. 4. Examination of pre-inoculated seed. Aust. J. Exp. Agric. Anim. Husb. 15, 780–87.

    Google Scholar 

  • Burgess, D. R. and Hepworth, G. (1996) Biocontrol of sclerotinia stem rot (Sclerotinia minor) in sunflower by seed treatment with Gliocladium virens. Plant Pathol. 45, 583–92.

    Google Scholar 

  • Burris, J. S. (1994) Incorporation of microencapsulated beneficial organisms into environmentally acceptable seed coatings to enhance crop performance in soybeansin Seed Treatment: Progress and Prospects, Monograph Series, No. 57 (ed. T. Martin), British Crop Protection Council, Farnham, pp. 327–32.

    Google Scholar 

  • Burton, J. C. (1967) Rhizobium culture and use, in Microbial technology (ed. H. J. Peppler), Van Nostrand-Reinhold, New York, pp. 1–33.

    Google Scholar 

  • Burton, J. C. (1979) Rhizobium species, in Microbial technology, 2nd edn, Vol. 1 (eds H. J. Peppler and D. Perlman), Academic Press, London, pp. 29–58.

    Google Scholar 

  • Burton, J. C. (1981) Rhizobium inoculants for developing countries. Trop. Agric. 58, 291–5.

    Google Scholar 

  • Burton, J. C. (1982) Modern concepts in legume production, in Biological Nitrogen Fixation Technology for Tropical Agriculture (eds P. H. Graham and S. C. Harris), CIAT, Cali, Columbia, pp. 105–14.

    Google Scholar 

  • Callan, N. W., Mathre, D. E. and Miller, J. B. (1990) Biopriming seed treatment for biological control of Pythium ultimum pre-emergence damping-off in sh2 sweet corn. Plant Dis. 74, 68–72.

    Google Scholar 

  • Callan, N. W., Mathre, D. E. and Miller, J. B. (1991) Field performance of sweet corn seed bio-primed and bacterized with Pseudomonas fluorescens AB254. HortSci. 26, 1163–65.

    Google Scholar 

  • Campbell, R. (1994) Biological control of soil-borne diseases: some present problems and different approaches. Crop Prot. 13, 4–13.

    Google Scholar 

  • Catroux, G. (1991) Inoculant quality standards and controls in France, in Expert Consultation on Legume Inoculant Production and Quality Control, Report, Food and Agriculture Organisation of the United Nations, Rome, pp. 113–20.

    Google Scholar 

  • CelPril (1979) Alfalfa study shows better survival with coated seed. Seed World 117, 24.

    Google Scholar 

  • Chao, W. L. and Alexander, M. (1984) Mineral soils as carriers for Rhizobium inoculants. Appl. Environ. Microbiol. 47, 94–7.

    PubMed  CAS  Google Scholar 

  • Cliquet, S. and Scheffer, R. J. (1996) Biological control of damping-off caused by Pythium ultimum and Rhizoctonia solani using Trichoderma spp. applied as industrial film coatings on seeds. Eur. J. Plant Pathol. 102, 247–55.

    Google Scholar 

  • Crawford, S. L. and Berryhill, D. L. (1983) Survival of Rhizobium phaseoli in coal-based legume inoculants applied to seeds. Appl. Environ. Microbiol. 45, 703–5.

    PubMed  CAS  Google Scholar 

  • Clayton, P. B. (1993) Seed Treatment, in Application Technology for Crop Protection (ed. G. A. Matthews and E. C. Hislop), CAB International, Wallingford, pp. 329–49.

    Google Scholar 

  • Conway, K. E. (1986) Use of fluid-drilling gels to deliver biological control agents to soil. Plant Dis. 70, 835–9.

    Google Scholar 

  • Date, R. A. (1970) Microbiological problems in the inoculation and nodulation of legumes. Plant Soil 32, 703–25.

    Google Scholar 

  • Day, J. M. (1991) Inoculant production in the UK, in Expert Consultation on Legume Inoculant Production and Quality Control,Report, Food and Agriculture Organisation of the United Nations, Rome, pp. 75–85.

    Google Scholar 

  • Deacon, J. W. (1994) Rhizosphere constraints affecting biocontrol organisms applied to seeds, in Seed Treatment: Progress and Prospects,Monograph No. 57 (ed. T. Martin), British Crop Protection Council, Farnham, pp. 315–26.

    Google Scholar 

  • Dehne, H. W. and Backhaus, G. F. (1986) The use of vesicular-arbuscular mycorrhizal fungi in plant production. I. Inoculum production. Pflanzenkr. Pfanzenschutz 93, 415–24.

    Google Scholar 

  • Deschodt, C. C. and Strijdom B. W. (1976) Stability of a coal-bentonite base as a carrier of rhizobia in inoculants. Phytophylactica 8, 1–5.

    CAS  Google Scholar 

  • Digat, B. (1991) A new encapsulation technology for bacterial inoculants and seed bacterization, in Plant Growth-Promoting Rhizobacteria — Progress and Prospects, 2nd International Workshop on Plant Growth-Promoting Rhizobacteria, Interlaken, Switzerland, October 1990 (eds C. Keel, B. Koller and G. Défago), International Union of Biological Sciences, WPRS Bulletin, 1991/XIV/8, pp. 383–91.

    Google Scholar 

  • Dommergues, Y. R., Diem, H. G., and Davies, C. (1979) Polyacrylamide-entrapped rhizobium as an inoculant for legumes. Appl. Environ. Microbiol. 37, 779–81.

    PubMed  CAS  Google Scholar 

  • Dube, J. N., Mahhere, D. P. and Rawat, A. K. (1980) Development of coal as a carrier for rhizobial inoculants. Sci. Cult. 46, 304.

    Google Scholar 

  • Eaglesham, A. R. J. (1989) Global importance of Rhizobium as an inoculant, in Microbial Inoculation of Crop Plants (eds R. Campbell and R. M. Macdonald), IRL Press, London, pp. 29–48.

    Google Scholar 

  • Eastin, J. A. (1990) Solid matrix priming of seeds. US Patent 4 912 874.

    Google Scholar 

  • Elegba, M. S. and Rennie, R. J. (1984) Effect of different inoculant adhesive agents on rhizobial survival, nodulation and nitrogenase (acetylene-reducing) activity of soybeans (Glycine max L. Merrill). Can. J. Soil Sci. 64, 631–6.

    CAS  Google Scholar 

  • Fravel, D. R., Davis, J. R. and Sorensen, L. H. (1986) Effect of Taloromyces flavus and metham on Verticillium wilt incidence and potato yield 1984–1985. Biol. Cultural Tests 1,17.

    Google Scholar 

  • Fravel, D. R., Marois, J. J., Lumsden, R. D. and Connick, W. J. Jr (1985) Encapsulation of potential biocontrol agents in an alginate-clay matrix. Phytopathol. 75, 774–7.

    Google Scholar 

  • Gaunt, R. E. (1978) Inoculation of vesicular-arbuscular mycorrhizal fungi on onion and tomato seeds. NZ J. Bot. 16, 69–71.

    Google Scholar 

  • Gianinazzi, S. and Gianinazzi-Pearson, V. (1986) Progress and headaches in endomycorrhizal biotechnology. Symbiosis 2, 139–49.

    Google Scholar 

  • Gianinazzi, S., Gianinazzi-Pearson, V. and Trouve-lot, A. (1989) Potentialities and procedures for the use of endomycorrhizas with special emphasis on high value crops, in Biotechnology of Fungi for Improving Plant Growth (eds J. M. Whipps and R. D. Lumsden), Cambridge University Press, Cambridge, pp. 41–54.

    Google Scholar 

  • Gordon-Lennox, G., Walther, D. and Gindrat, D. (1987) Utilisation d’antagonistes pour l’enrobage des semences: efficacité et mode d’action contre les agents de la fonte des semis. EPPO Bull. 17, 631–7.

    Google Scholar 

  • Graham-Weiss, L., Bennet, M. L. and Paau, A. S. (1987) Production of bacterial inoculants by direct fermentation on nutrient supplemented vermiculite. Appl. Environ. Microbiol. 53, 2138–41.

    PubMed  CAS  Google Scholar 

  • Gray, D. (1994) Large-scale seed priming techniques and their integration with crop protection treatments, in Seed Treatment: Progress and Prospects, Monograph No. 57 (ed. T. Martin), British Crop Protection Council, Farnham, pp. 353–62.

    Google Scholar 

  • Grimes, H. D. and Mount, M. S. (1984) Influence of Pseudomonas putida on nodulation of Phaseolus vulgaris. Soil Biol. Biochem. 16, 27–30.

    Google Scholar 

  • Hadar, Y., Harman, G. E. and Taylor, A. G. (1984) Evaluation of Trichoderma koningii and T. harzianum from New York soils for biological control of seed rot caused by Pythium spp. Phytopathol. 73, 1322–5.

    Google Scholar 

  • Hadar, Y., Harman, G. E., Taylor, A. G. and Norton, J. M. (1983) Effects of pregermination of pea and cucumber seeds and of seed treatment with Enterobacter cloacae on rots caused by Pythium spp. Phytopathol. 74, 106–10.

    Google Scholar 

  • Hall, I. R. (1988) Potential for exploiting vesiculararbuscular mycorrhizas in agriculture. Adv. Biotech. Processes 9, 141–74.

    Google Scholar 

  • Halmer, P. (1988) Technical and commercial aspects of seed pelleting and film-coating, in Application to Seeds and Soil, Monograph No. 39 (ed. T. Martin), British Crop Protection Council, Thornton Heath, pp. 191–204.

    Google Scholar 

  • Halmer, P. (1994) The development of quality seed treatments in commercial practice - objectives and achievements, in Seed Treatment: Progress and Prospects, Monograph No. 57 (ed. T. Martin), British Crop Protection Council, Farnham, pp. 363–74.

    Google Scholar 

  • Handelsman, J. E. and Halverson, L. J. (1989) Method to enhance root nodulation in legumes and inoculum preparation therefor. US Patent 4 878 936.

    Google Scholar 

  • Harman, G. E. (1991) Seed treatments for biological control of plant disease. Crop Protect. 10, 166–71.

    Google Scholar 

  • Harman, G. E. and Taylor, A. G. (1988) Improved seedling performance by integration of biological control agents at favorable pH levels with solid matrix priming. Phytopathol. 78, 520–5.

    Google Scholar 

  • Hattingh, M. J. and Gerdemann, J. W. (1975) Inoculation of Brazilian sour orange seed with an endomycorrhizal fungus. Phytopathol. 65, 1013–6.

    Google Scholar 

  • Hayman, D. S., Morris, E. J. and Page, R. J. (1981) Methods for inoculating field crops with mycorrhizal fungi. Ann. Appl. Biol. 99, 247–53.

    Google Scholar 

  • Hayman, D. S. and Mosse, B. (1977) Mycorrhizal Studies: Inoculation Methods, 1976 Report, Part 1, Rothamsted Experimental Station, Harpenden, p. 286.

    Google Scholar 

  • Inbar, I., Menedez, A. and Chet, I. (1996) Hyphal interaction between Trichoderma harzianum and Sclerotinia sclerotiorum and its role in biological control. Soil Biol. Biochem. 28, 757–63.

    CAS  Google Scholar 

  • Jager, G. and Velvis, H. (1986) Biological control of Rhizoctonia solani on potatoes by antagonists. 5. The effectiveness of three isolates of Verticillium biguttatum as inoculum for seed tubers and of a soil treatment with a low dosage of pencycuron. Neth. J. Plant Pathol. 92, 231–8.

    CAS  Google Scholar 

  • Jeffs, K. A. and Tuppen, R. J. (1986) Application of pesticides to seeds. Requirements for efficient treatment of seeds, in Seed Treatment (ed. K. A. Jeffs), British Crop Protection Council, Thornton Heath, pp. 17–45.

    Google Scholar 

  • Jones, D. G. and Lewis D. M. (1993) Rhizobium inoculation of crop plants, in Exploitation of Microorganisms (ed. D. G. Jones), Chapman & Hall, London, pp. 197–224.

    Google Scholar 

  • Jung, G., Mugnier, J., Diem, H. G. et al. (1982) Polymer-entrapped Rhizobium as an inoculant for legumes. Plant Soil 65, 219–31.

    CAS  Google Scholar 

  • Kaiser, W. J. and Hannan, R. M. (1984) Biological control of seed rot and preemergence damping-off of chickpea with Penicillium oxalicum. Plant Dis. 68, 806–11.

    Google Scholar 

  • Kandasamy, R. and Prasad, N. N. (1971) Lignite as a carrier of rhizobia. Curr. Sci. 40, 496.

    Google Scholar 

  • Khan, A. A. (1992) Preplant physiological seed conditioning. Hort. Rev. 14, 131–81.

    Google Scholar 

  • Kloepper, J. W. and Schroth, M. N. (1981) Development of a powder formulation of rhizobacteria for inoculation of potato seed pieces. Phytopathol. 71,590–2.

    Google Scholar 

  • Kluepfel, D. A. (1993) The behavior and tracking of bacteria in the rhizosphere. Ann. Rev. Phytopathol. 31, 441–72.

    Google Scholar 

  • Kremer, R. J. and Peterson, H. L. (1982) Field evaluation of selected Rhizobium in an improved legume inoculant. Agron. J. 75, 139–43.

    Google Scholar 

  • Kremer, R. J. and Peterson, H. L. (1983) Effects of carrier and temperature on survival of Rhizobium spp. in legume inocula: development of an improved type of inoculant. Appt. Env. Microbiol. 45 1790–4.

    CAS  Google Scholar 

  • Legro, B. and Satter, H. (1995) Biological control of Pythium through seedcoating and seedpriming with Trichoderma, in Proceedings of the 4th National Symposium on Stand Establishment of Horticultural Crops,Monterey, California, pp. 235–37.

    Google Scholar 

  • Lewis, J. A. (1991) Formulation and delivery systems of biocontrol agents with emphasis on fungi, in The Rhizosphere and Plant Growth (eds D. L. Keister and P. B. Cregan), Kluwer Academic, Dordrecht, The Netherlands, pp. 279–87.

    Google Scholar 

  • Lisansky, S. G. and Coombs, J. (1993) The Worldwide Directory of Agrobiologicals 1993–1994, CPL Scientific, Newbury.

    Google Scholar 

  • Lowther, W. L. and McDonald, J. R. (1973) Inoculation and pelleting of clover for oversowing. NZ J. Exp. Agric. 1 175–9.

    Google Scholar 

  • Lumsden, R. D. and Lewis, J. A. (1989) Selection, production, formulation and commercial use of plant disease biocontrol fungi: problems and progress, in Biotechnology of Fungi for Improving Plant Growth (eds J. M. Whipps and R. D. Lumsden), Cambridge University Press, Cambridge, pp. 171–90.

    Google Scholar 

  • Lutchmeah, R. S. and Cooke, R. C. (1985) Pelleting of seed with the antagonist Pythium oligandrum for biological control of damping-off. Plant Pathol. 34 528–31.

    Google Scholar 

  • Mahaffee, W. F. and Backman, P. A. (1993) Effect of seed factors on spermosphere and rhizosphere colonization of cotton by Bacillus subtilis GB03. Phytopathol. 83 1120–5.

    Google Scholar 

  • Marois, J. J., Johnston, S. A, Dunn, M. T. and Papa-vizas, G. C. (1982) Biological control of Verticillium wilt of eggplant in the field. Plant Dis. 66 1166–68.

    Google Scholar 

  • Martin, F. N. and Hancock, J. G. (1987) The use of Pythium oligandrum for biological control of pre-emergence damping-off caused by P. ultimum. Phytopathol. 77 1013–20.

    Google Scholar 

  • Maude, R. B. (1995) Disease control: eradication and reduction of inoculum by seed treatment, in Seedborne Diseases and Their Control: Principles and Practice, CAB International, Wallingford, pp. 114–78.

    Google Scholar 

  • McQuilken, M. P., Whipps, J. M. and Cooke, R. C. (1990a) Oospores of the biocontrol agent Pythium oligandrum bulk-produced in liquid culture. Mycol. Res. 94 613–6.

    Google Scholar 

  • McQuilken, M. P., Whipps, J. M. and Cooke, R. C. (1990b) Control of damping-off in cress and sugar beet by commercial seed-coating with Pythium oligandrum. Plant Pathol. 39 452–62.

    Google Scholar 

  • McQuilken, M. P., Whipps, J. M. and Cooke, R. C. (1992) Nutritional and environmental factors affecting biomass and oospore production of the biocontrol agent Pythium oligandrum . Enzyme Microb. Biotechnol. 14 106–11.

    CAS  Google Scholar 

  • Meade, J., Higgins, P. and O’Gara, F. (1985) Production and storage of Rhizobium leguminosarum cell concentrates for use as inoculants. J. Appl. Bact. 58 517–24.

    Google Scholar 

  • Merriman, P. R., Price, R. D., Kollmorgen, J. F. et al. (1974) Effect of seed inoculation with Bacillus subtilis and Streptomyces griseus on the growth of cereals and carrots. Aust. J. Agric. Res. 25 219–26.

    Google Scholar 

  • Mihuta-Grimm, L. and Rowe, R. C. (1986) Trichoderma spp. as biocontrol agents of Rhizoctonia damping-off of radish in organic soil and cornparison of four delivery systems. Phytopathol. 76, 306–312.

    Google Scholar 

  • Mitchell, D. T. (1993) Mycorrhizal associations, in Exploitation of Microorganisms (ed. D. Gareth Jones), Chapman & Hall, London, pp. 169–196.

    Google Scholar 

  • Mukhopadhyay, A. N., Shrestha, S. M. and Mukherjee, P. K. (1992) Biological seed treatment for control of soil-borne plant pathogens. FAO Plant Prot. Bull. 40, 21–30.

    Google Scholar 

  • Mulligan, C. N. and Cooper, D. G. (1985) Pressate from peat dewatering as a substrate for bacterial growth. Appl. Environ. Microbiol. 50, 160–2.

    PubMed  CAS  Google Scholar 

  • Nagtzaam, M. P. M. and Bollen, G. L. (1994) Long shelf life of Talaromyces flavus in coating material of pelleted seed. Eur. J. Plant Pathol. 100,279–282.

    Google Scholar 

  • Nelson, E. B. (1988) Biological control of Pythium seed rot and preemergence damping-off of cotton with Enterobacter cloacae and Erwinia herbicola applied as seed treatments. Phytopathol. 72, 140–2.

    Google Scholar 

  • Nelson, E. B., Harman, G. E. and Nash, G. T. (1988) Enhancement of Trichoderma-induced biological control of Pythium seed rot and pre-emergence damping-off of peas. Soil Biol. Biochem. 20, 145–50.

    CAS  Google Scholar 

  • Nethery, A. A. (1991) Inoculant production with non-sterile carriers, in Expert Consultation on Legume Production and Quality Control,Report, Food and Agriculture Organization of the United Nations, Rome, pp. 43–50.

    Google Scholar 

  • Paau, A. S. (1988) Formulations useful in applying beneficial microorganisms to seeds. Trends Biotech. 6, 276–9.

    Google Scholar 

  • Paau, A. S., Graham, L. L. and Bennett, M. (1991) Progress in formulation research for PGPR and biocontrol inoculants, in Plant Growth-Promoting Rhizobacteria – Progress and Prospects, 2nd International Workshop on Plant Growth-Promoting Rhizobacteria, Interlaken, Switzerland, October 1990 (eds C. Keel, B. Koller and G. Défago), International Union of Biological Sciences, WPRS Bulletin, 1991/XIV/8, pp. 399–403.

    Google Scholar 

  • Papavizas, G. C., Fravel, D. R. and Lewis, J. A. (1987) Proliferation of Talaromyces flavus in soil and survival in alginate pellets. Phytopathol. 77, 131–6.

    Google Scholar 

  • Parker, F. E. and Vincent, J. M. (1981) Sterilisation of peat by gamma-irradiation. Plant Soil 61, 285–93.

    Google Scholar 

  • Pearson, J. F. and Jackson, T. A. (1992) Use of a polyacrylamide to improve bacterial shelf lifein Proceedings of the 10th Australian Biotechnology Conference, CSIRO, Canberra, pp. 364–5.

    Google Scholar 

  • Philpotts, H. (1976) Filter mud as a carrier for rhizobium inoculants. J. Appl. Bact. 41, 277–81.

    Google Scholar 

  • Pill, W. G. (1991) Advances in fluid drilling. HortTechnol. 1, 59–65.

    Google Scholar 

  • Postgate, J. (1978) Nitrogen Fixation, Studies in Biology No. 92, Edward Arnold, London.

    Google Scholar 

  • Potts, M. (1994) Desiccation tolerance of prokaryotes. Microbiol. Rev. 58, 755–805.

    PubMed  CAS  Google Scholar 

  • Powell, C. L. (1984) Field inoculation with VA mycorrhizal fungi, in VA Mycorrhiza (eds C. L. Powell and D. J Bagyaraj), CRC Press, Boca Raton, Florida, pp. 205–22.

    Google Scholar 

  • Pugashetti, B. K., Gopalgoude, H. S. and Patel, R. B. (1971) Cellulose powder as legume inoculant base. Curr. Sci. 40, 494–5.

    Google Scholar 

  • Rath, A. C. (1992) Metarhizium anisopliae for control of the Tasmanian pasture scarab Adoryphorus couloni, in The Use of Pathogens in Scarab Pest Management (ed. T. A. Jackson and T. R. Glare), Intercept, Andover, pp. 217–26.

    Google Scholar 

  • Redenbaugh, K., Slade, D., Viss, P and Fujii, J. A. (1987) Encapsulation of somatic embryos in synthetic seed coats. HortSci. 22, 803–9.

    Google Scholar 

  • Renwick, A. and Poole, N. (1989) The environmental challenge to biological control of plant pathogens, in Biotechnology of Fungi for Improving Plant Growth (eds J. M. Whipps and R. D. Lumsden), Cambridge University Press, Cambridge, pp. 277–90.

    Google Scholar 

  • Rhodes, D. J. (1993) Formulation of biological control agents, in Exploitation of Microorganisms (ed. D. Gareth Jones), Chapman & Hall, London, pp. 411–39.

    Google Scholar 

  • Rhodes, J. M. and Powell, K. A. (1994) Biological seed treatments, in Seed Treatment: Progress and Prospects, Monograph No. 57 (ed. T. Martin), British Crop Protection Council, Farnham, pp. 303–10.

    Google Scholar 

  • Ristaino, J. B., Lewis, J. A. and Lumsden, R. D. (1994) Influence of Gliocladium virens and delivery systems on biological control of southern blight on carrot and tomato in the field. Plant Dis. 78, 153–6.

    Google Scholar 

  • Roughley, R. J. and Pulsford, D. J. (1982) Production and control of legume inoculants, in Nitrogen Fixation in Legumes (ed. J. M. Vincent), Academic Press, Sydney, pp. 193–209.

    Google Scholar 

  • Roughley, R. J. and Vincent, J. M. (1967) Growth and survival of Rhizobium spp. in peat culture. J. Appl. Bacteriol. 30, 362–76.

    Google Scholar 

  • Rowse, H. R. (1991) Methods of priming seeds. UK Patent 2 192 781.

    Google Scholar 

  • Rowse, H. R. (1992) Methods of priming seeds. UK Patent 5 119 589.

    Google Scholar 

  • Sadler, T. J., Jackson, T. A. and Moorhouse, A. M. (1992) Use of bacterial seed coatings for protection of grass seedlings from grass grub attack, in Proceedings of the XIX International Congress in Entomology,Beijing, pp. 364–5.

    Google Scholar 

  • Schippers, B., Bakker, A. W. and Bakker, P. A. H. M. (1987) Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Ann. Rev. Phytopathol. 25 339–58.

    Google Scholar 

  • Scott, J. M. (1989) Seed coatings and treatments and their effects on plant establishment. Adv. Agron. 42 43–83.

    CAS  Google Scholar 

  • Shah-Smith, D. A. and Burns, R. G. (1996) Biological control of damping-off of sugarbeet by Pseudomonas putida applied to seeds. Plant Pathol. 45 572–82.

    Google Scholar 

  • Shah-Smith, D. A. and Burns, R. G. (1997) Shelf-life of a biocontrol Pseudomonas putida applied to sugar beet seeds using commercial coatings. Biocontrol. Sci. Technol. 7, 65–74.

    Google Scholar 

  • Smith, R. S. (1987) Production and quality control of inoculants, in Symbiotic Nitrogen Fixation Technology (ed. Elkan, G. H.), Marcel Dekker, New York, pp. 391–411.

    Google Scholar 

  • Smith, R. S. (1992) Legume inoculant formulation and application. Can. J. Microbiol. 38 485–92.

    Google Scholar 

  • Somasegaran, P. (1985) Inoculant production with diluted liquid cultures of Rhizobium spp. and autoclaved peat: evaluation of diluents, Rhizobium spp., peat sterility requirements, storage, and plant effectiveness. Appl. Environ. Microbiol. 50 398–405.

    PubMed  CAS  Google Scholar 

  • Somasegaran, P. (1991) Inoculant production with emphasis on choice of carriers, methods of production and reliability testing/ quality assurance guidelines, in Expert Consultation on Legume Inoculant Production and Quality Control, Report, Food and Agricultural Organization, Rome, pp. 87–106.

    Google Scholar 

  • Somasegaran, P., Reyes, V. G. and Hoben, H. J. (1984) The influence of high temperature on the growth and survival of Rhizobium spp. in peat inoculants during preparation, storage and distribution. Can. J. Microbiol. 30 23–30.

    Google Scholar 

  • Sparrow, S. D. and Ham, G. E. (1983) Survival of Rhizobium phaseoli in six carrier materials. Agron. J. 73 181–4.

    Google Scholar 

  • Staphorst, J. L. and Strijdom, B. W. (1972) The effect of yeast extract concentration in media on strains of Rhizobium meliloti. Phytophylactica 4, 29–32.

    Google Scholar 

  • Stribley, D. P. (1989) Present and future value of mycorrhizal inoculants, in Microbial Inoculation of Crop Plants (eds R. M. Macdonald and R. E. Campbell), IRL Press, Oxford, pp. 49–65.

    Google Scholar 

  • Strijdom, B. W. and Deschodt, C. C. (1976) Carriers of rhizobia and the effect of prior treatment on the survival of rhizobia, in Symbiotic Nitrogen Fixation in Plants (ed. P. S. Nutman), Cambridge University Press, London, pp. 151–68.

    Google Scholar 

  • Strijdom, B. W. and van Rensburg, H. J. (1981) Effect of steam sterilisation and gamma irradiation of peat on quality of Rhizobium inoculants. Appl. Environ. Microbiol. 41 1344–7.

    PubMed  CAS  Google Scholar 

  • Szafirowska, A., and Khan, A. A. (1995) Seed humidification: a means to enhance the effectiveness of a biofungicide to improve emergence and yield in snap bean, in Proceedings of the 4th National Symposium on Stand Establishment of Horticultural Crops, Monterey, California, pp. 93–100.

    Google Scholar 

  • Taylor, A. G. (1990) Solid matrix priming of seeds. US Patent 4 912 874.

    Google Scholar 

  • Taylor, A. G. and Harman, G. E. (1990) Concepts and technologies of selected seed treatments. Ann. Rev. Phytopathol. 28 321–39.

    Google Scholar 

  • Taylor, A. G., Klein, D. E., and Whitlow, T. H. (1988) SMP: solid matrix priming of seeds. Scientia Horticulturae 37 307–17.

    Google Scholar 

  • Taylor, A. G., Min, T. G., Harman, G. E. and Jin, X. (1991) Liquid coating formulation for the application of biological seed treatments of Trichoderma harzianum. Biol. Control 1 16–22.

    Google Scholar 

  • Theodorou, C. and Benson, A. D. (1983) Operational mycorrhizal inoculation of nursery beds with seed-borne fungal spores. Austr. For. 46 43–7.

    Google Scholar 

  • Thompson, D. J. and Stout, D. G. (1993) Influence of three commercial seed coatings on alfalfa seedling emergence, nodulation, and yield. J. Seed Technol. 16 9–16.

    Google Scholar 

  • Thompson, J. A. (1980) Production and quality control of legume inoculants, in Methods for Evaluating Biological Nitrogen Fixation (ed. F. J. Bergersen), Wiley, London, pp. 489–533.

    Google Scholar 

  • Tomlin, C. (ed.) (1994) The Pesticide Manual, British Crop Protection Council/Royal Society of Chemistry, Farnham/London.

    Google Scholar 

  • Vannacci, G. and Harman, G. E. (1987) Biocontrol of seed-borne Alternaria raphani and A. brassicicola. Can. J. Microbiol. 33 850–6.

    Google Scholar 

  • Vesely, D. and Hejdanek, S. (1984) Microbial relations of Pythium oligandrum and problems in the use of this organism for the biological control of damping-off in sugar beet. Zentralbl. Mikrobiol. 139, 257–65.

    Google Scholar 

  • Walther, D. and Gindrat, D. (1987) Biological control of Phoma and Pythium damping-off of sugar beet with Pythium oligandrum. J. Phytopathol. 119, 167–74.

    Google Scholar 

  • Warner, A., Mosse, B. and Dingemann, L. (1985) The nutrient film technique for inoculum production, in Proceedings of the 6th North American Conference on Mycorrhizae (ed. R. Molina), Forest Research Laboratory, Corvallis, Oregon, p. 85.

    Google Scholar 

  • Weller, D. M. (1988) Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Ann. Rev. Phytopathol. 26, 379–407.

    Google Scholar 

  • Whipps, J. M. and McQuilken, M. P. (1993) Aspects of biocontrol of fungal plant pathogens, in Exploitation of Microorganisms (ed. D. Gareth-Jones), Chapman & Hall, London, pp. 45–79.

    Google Scholar 

  • Whipps, J. M., McQuilken, M. P. and Budge, S. P. (1993) Use of fungal antagonists for biocontrol of damping-off and sclerotinia diseases. Pestic. Sci. 37, 309–13.

    Google Scholar 

  • Williams, P. M. (1991) Inoculant composition for plants. European Patent 0 253 673B1.

    Google Scholar 

  • Williams, P. M. (1994) Seed coatings. European Patent 0 378 000B1.

    Google Scholar 

  • Wolf, H. J. and Hoflich, G. (1986) International knowledge of the technology of production and storage of Rhizobium inoculants with peat as a carrier. Zentrab. Mikrobiol. 14, 169–76.

    Google Scholar 

  • Wood, T. (1987) Commercial production of VA mycorrhiza inoculum: axenic versus non-axenic techniques, in Mycorrhizae in the Next Decade: Practical Application and Research Priorities (eds D. M. Sylvia, L. L. Hung and J. H. Graham), University of Florida, Gainsville, p. 274.

    Google Scholar 

Download references

Authors

Editor information

H. D. Burges

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

McQuilken, M.P., Halmer, P., Rhodes, D.J. (1998). Application of Microorganisms to Seeds. In: Burges, H.D. (eds) Formulation of Microbial Biopesticides. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4926-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4926-6_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6066-0

  • Online ISBN: 978-94-011-4926-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics