Skip to main content

Cell biology aspects of safety in cell culture

  • Chapter
Safety in Cell and Tissue Culture
  • 323 Accesses

Abstract

Cell cultures are used extensively in many areas of biological research. Whereas the hazards to personnel associated with the use of infected tissues are well documented and appropriate safety measures have been introduced to minimize these risks, very little is known about the potential risks associated with the experimental manipulation of primary cultures or established cell lines. In particular, little information is available on which to base a reliable risk assessment of, for example, the experimental introduction of activated oncogenes into cell cultures or the targeted disruption of endogenous tumour suppressor genes [1]. This chapter seeks to address relevant safety aspects of experimental manipulations which are applied to cells in vitro: it is not intended as an exhaustive survey of the experimental procedures involved, but rather to provide an insight into some of the general principles that may aid in determining a level of risk.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Advisory Committee on Dangerous Pathogens (1995) Appendix 13, The hazards of cell cultures, in Categorisation of Biological Agents according to Hazard and Categories of Containment, HSE Books, Sudbury, UK, pp. 95–97.

    Google Scholar 

  2. Collins, C.H. (1993) Laboratory-acquired infections, in Laboratory-acquired Infections, Butterworth-Heinemann, Oxford, pp. 1–28.

    Google Scholar 

  3. National Research Council (1989) Biosafety in the Laboratory, Prudent Practices for the Handling and Disposal of Infectious Materials, National Academy Press, Washington, D.C.,pp. 83–140.

    Google Scholar 

  4. Gregg, M.B. (1975) Recent outbreaks of lymphocytic choriomeningitis in the United States of America. Bull. World Health Org., 52, 549–553.

    PubMed  CAS  Google Scholar 

  5. Slamon, D.J., deKernion, J.B., Verma, I.M. and Cline, M.J. (1984) Expression of cellular oncogenes in human malignancies. Science, 224, 256–262.

    Article  PubMed  CAS  Google Scholar 

  6. Sun, R., Grogan, E., Shedd, D. et al. (1995) Transmissible retrovirus in Epstein-Barr virus producer B95-8 cells. Virology, 209, 374–383.

    Article  PubMed  CAS  Google Scholar 

  7. Metz, T., Harris, A.W. and Adams, J.M. (1995) Absence of p53 allows direct immortalization of hematopoietic cells by the myc and raf oncogenes. Cell, 82, 29–36.

    Article  PubMed  CAS  Google Scholar 

  8. Bond, J.A., Wyllie, F.S. and Wynford-Thomas, D. (1994) Escape from senescence in human diploid fibroblasts induced directly by mutant p53. Oncogene, 9, 1885–1889.

    PubMed  CAS  Google Scholar 

  9. Rittling, S.R. and Denhardt, D.T. (1992) p53 mutations in spontaneously immortalized 3T12 but not 3T3 mouse embryo cells. Oncogene, 7, 935–942.

    PubMed  CAS  Google Scholar 

  10. Tsukada, T., Tomooka, Y., Takai, S. et al. (1993). Enhanced proliferate potential in culture of cells from p53-deficient mice. Oncogene, 8, 3313–3322.

    PubMed  CAS  Google Scholar 

  11. Lowe, S.W., Jacks, T., Housman, D.E. and Ruley, H.E. (1994) Abrogation of oncogene-associated apoptosis allows transformation of p53-deflcient cells. Proc. Natl Acad. Sci. USA, 91, 2026–2030.

    Article  PubMed  CAS  Google Scholar 

  12. Brenner, A.J. and Aldaz, CM. (1995) Chromosome 9p allelic loss and p16/ CDKN2 in breast cancer and evidence of p16 inactivation in immortal breast epithelial cells. Cancer Res., 55, 2892–2895.

    PubMed  CAS  Google Scholar 

  13. Khoobyarian, N. and Marczynska, B. (1993) Cell immortalization: the role of viral genes and carcinogens. Virus Res., 30, 113–128.

    Article  PubMed  CAS  Google Scholar 

  14. Kempkes, B., Pich, D., Zeidler, R. and Hammerschmidt, W. (1995) Immortalization of human primary B lymphocytes in vitro with DNA. Proc. Natl Acad. Sci. USA, 92, 5875–5879.

    Article  PubMed  CAS  Google Scholar 

  15. Farrell, P.J. (1995) Epstein-Barr virus immortalizing genes. Trends Microbiol., 3, 105–109.

    Article  PubMed  CAS  Google Scholar 

  16. Tommasino, M. and Crawford, L. (1995) Human papillomavirus E6 and E7: proteins which deregulate the cell cycle. BioEssays, 6, 509–518.

    Article  Google Scholar 

  17. Schmitt, A., Harry, J.B., Rapp, B. et al. (1994) Comparison of the properties of the E6 and E7 genes of low-and high-risk cutaneous papillomaviruses reveals strongly transforming and high Rb-binding activity for the E7 protein of the low-risk human papillomavirus type. J. Virol., 68, 7051–7059.

    PubMed  CAS  Google Scholar 

  18. Harrington, E.A., Bennett, M.R., Fanidi, A. and Evan, G.I. (1994) c-Myc-induced apoptosis in fibroblasts is inhibited by specific cytokines. EMBO J., 13, 3286–3295.

    PubMed  CAS  Google Scholar 

  19. Doolittle, R.F., Hunkapiller, M.W., Hood, L.E. et al. (1983) Simian sarcoma virus oncogene, v-sis, is derived from the gene (or genes) encoding a platelet-derived growth factor. Science, 221, 275–277.

    Article  PubMed  CAS  Google Scholar 

  20. Waterfield, M.D., Scrace, G.T., Whittle, N. et al. (1983) Platelet-derived growth factor is structurally related to the putative transforming protein p28sis of simian sarcoma virus. Nature, 304, 35–39.

    Article  PubMed  CAS  Google Scholar 

  21. Peters, G. (1991) Inappropriate expression of growth factor genes in tumours induced by mouse mammary tumour virus. Semin. Virol., 2, 319–328.

    CAS  Google Scholar 

  22. Nusse, R. (1991) Insertional mutagenesis in mouse mammary tumorigenesis. Curr. Topics Microbiol. Immunol., 171, 43–65.

    Article  CAS  Google Scholar 

  23. Downward, J., Yarden, Y., Mayes, E. et al. (1984) Close similarity of epidermal growth factor receptor and v-erb-B oncogene protein sequences. Nature, 307, 521–527.

    Article  PubMed  CAS  Google Scholar 

  24. Nilsen, T.W., Maroney, P.A., Goodwin, R.G. et al. (1985) c-erb-B activation in ALV-induced erythroblastosis: novel RNA processing and promoter insertion result in expression of an amino-truncated EGF receptor. Cell, 41, 719–726.

    Article  PubMed  CAS  Google Scholar 

  25. Privalsky, M.L. (1992) Retinoid and thyroid hormone receptors: ligand-regulated transcription factors as proto-oncogenes. Sernin. Cell Biol., 3, 99–106.

    Article  CAS  Google Scholar 

  26. McCormick, F. (1989) ras GTPase activating protein: signal transmitter and signal terminator. Cell, 56, 5–8.

    Article  PubMed  CAS  Google Scholar 

  27. Cohen, J. (1993) Overview: mechanisms of apoptosis. Immunol. Today, 14, 126–130.

    Article  PubMed  CAS  Google Scholar 

  28. Wyllie, A.H. (1992) Apoptosis and the regulation of cell numbers in normal and neoplastic tissues: an overview. Cancer Metas. Rev., 11, 95–103.

    Article  CAS  Google Scholar 

  29. Evan, G., Wyllie, A., Gilbert, C. et al. (1992) Induction of apoptosis in fibroblasts by c-myc protein. Cell, 63, 119–125.

    Article  Google Scholar 

  30. Askew, D., Ashmun, R., Simmons, B. and Cleveland, J. (1991) Constitutive c-myc expression in IL-3-dèpendent myeloid cell line suppresses cycle arrest and accelerates apoptosis. Oncogene, 6, 1915–1922.

    PubMed  CAS  Google Scholar 

  31. Bissonnette, R., Echeverri, F., Mahboubi, A. and Green, D. (1992) Apoptotic cell death induced by c-myc is inhibited by bcl-2. Nature, 359, 552–554.

    Article  PubMed  CAS  Google Scholar 

  32. Fanidi, A., Harrington, E. and Evan, G. (1992) Cooperative interaction between c-myc and bcl-2 proto-oncogenes. Nature, 359, 554–556.

    Article  PubMed  CAS  Google Scholar 

  33. Wagner, A.J., Small, M.B. and Hay, N. (1993) Myc-mediated apoptosis is blocked by ectopic expression of bcl-2. Mol. Cell Biol., 13, 2432–2440.

    PubMed  CAS  Google Scholar 

  34. Freshney, R.I. (1985) Induction of differentiation in neoplastic cells. Anticancer Res., 5, 111–130.

    PubMed  CAS  Google Scholar 

  35. Seeger, R.C., Brodeur, G.M., Sather, H. et al. (1985) Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastomas. New Engl J. Med., 313, 1111–1116.

    Article  PubMed  CAS  Google Scholar 

  36. Knudson, A.G. (1971) Mutation and cancer: statistical study of retinoblastoma. Proc. Natl Acad. Sci. USA, 68, 820–823.

    Article  PubMed  Google Scholar 

  37. Hollingsworth, R.E., Hensey, CE. and Lee, W.-H. (1993) Retinoblastoma protein and the cell cycle. Curr. Opin. Genet. Devel., 3, 55–62.

    Article  CAS  Google Scholar 

  38. Levine, A.J., Momand, J. and Finlay, C.A. (1991) The p53 tumour suppressor gene. Nature, 351, 453–456.

    Article  PubMed  CAS  Google Scholar 

  39. Perry, M.E. and Levine, A.J. (1993) Tumor-suppressor p53 and the cell cycle. Curr. Opin. Genet. Devel., 3, 50–54.

    Article  CAS  Google Scholar 

  40. Picksley, S.M. and Lane, D.P. (1994) p53 and Rb: their cellular roles. Curr. Opin. Cell Biol., 6, 853–858.

    Article  PubMed  CAS  Google Scholar 

  41. Levine, A.J. (1992) The p53 tumour suppressor gene and product. Cancer Surv. 12, 59–79.

    PubMed  CAS  Google Scholar 

  42. Lane, D.P., Midgley, C.A., Hupp, T.R. et al. (1995) On the regulation of the p53 tumour suppressor, and its role in the cellular response to DNA damage. Phil. Trans. R. Soc. Lond. B., Biol Sci., 347, 83–87.

    Article  CAS  Google Scholar 

  43. Bishop, J.M. (1983) Cellular oncogenes and retroviruses. Ann. Rev. Biochem., 52, 301–354.

    Article  PubMed  CAS  Google Scholar 

  44. Nusse, R. and Berns, A. (1988) Cellular oncogene activation by insertion of retroviral DNA. Genes identified by provirus tagging, in Cellular Oncogene Activation (ed. G. Klein), Marcel Dekker, New York, pp. 95–119.

    Google Scholar 

  45. Land, H., Parada, L.F. and Weinberg, R.A. (1983) Cellular oncogenes and multistep carcinogenesis. Science, 222, 771–778.

    Article  PubMed  CAS  Google Scholar 

  46. Mattioni, T., Louvion, J.F. and Picard, D. (1994) Regulation of protein activities by fusion to steroid binding domains. Methods Cell Biol, 43, 335–352.

    Article  PubMed  CAS  Google Scholar 

  47. Burns, P.A., Jack, A., Neilson, F. et al. (1991) Transformation of mouse skin endothelial cells in vivo by direct application of plasmid DNA encoding the T24 H-ras oncogene. Oncogene, 6, 1973–1978.

    PubMed  CAS  Google Scholar 

  48. Parry, S.H., Abraham, S.N., Feavers, I.M. et al. (1981) Urinary tract infection due to laboratory-acquired Escherichia coli: relation to virulence. Brit. Med. J., 282, 949–950.

    Article  CAS  Google Scholar 

  49. Morgenstern, J.P. and Land, H. (1990) Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection and a complementary helper-free packaging cell line. Nucl. Acids Res., 18, 3587–3596.

    Article  PubMed  CAS  Google Scholar 

  50. Dong, J., Roth, M.G. and Hunter, E. (1992) A chimaeric avian retrovirus containing the influenza virus hemagglutinin gene has an expanded host range. J. Virol., 66, 7374–7382.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Littlewood, T. (1998). Cell biology aspects of safety in cell culture. In: Stacey, G., Doyle, A., Hambleton, P. (eds) Safety in Cell and Tissue Culture. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4916-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4916-7_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6061-5

  • Online ISBN: 978-94-011-4916-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics