Skip to main content

The organization and development of the arthropod ventral nerve cord: insights into arthropod relationships

  • Chapter

Part of the book series: The Systematics Association Special Volume Series ((SASS,volume 55))

Abstract

The central nervous system (CNS) of arthropods is a particularly suitable organ in which to search for characters to reconstruct evolutionary relationships between the major arthropod groups. Evolution has clearly wrought changes in nervous systems — indeed behavioural traits which are a prime target for natural selection are determined by the structure and function of this organ system. Despite this, the mature structure of the CNS and the developmental processes that generate it show a high degree of conservation compared with other, more malleable, features such as external body parts. Secondly, the CNS of arthropods is populated by an array of cells which can be recognized as individuals at a cellular level. Each neuron has a unique set of characters differentiating it from other neurons which can greatly assist the recognition of homologues between species, an essential first step when drawing inferences about evolutionary change.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agricola, H. and Bräunig, P. (1995) Comparative aspects of peptidergic signalling pathways in the nervous systems of arthropods, in Nervous Systems of Invertebrates: an Evolutionary and Comparative Approach (eds O. Breidbach and W. Kutsch), Birkhäuser Verlag, Basel, pp. 303–27.

    Chapter  Google Scholar 

  • Anderson, D.T. (1973) Embryology and Phylogeny in Annelids and Arthropods, Pergamon Press, Oxford.

    Google Scholar 

  • Bacon, J.P and Tyrer, N.M. (1978) The tritocerebral commissure giant (TCG): a bimodal interneuron in the locust, Schistocerca gregaria. Journal of Comparative Physiology, 126, 317–25

    Article  Google Scholar 

  • Bastiani, M.J. and Goodman, C.S. (1986) Guidance of neuronal growth cones in the grasshopper embryo. III Recognition of specific glial pathways. Journal of Neuroscience, 6, 3542–51.

    PubMed  CAS  Google Scholar 

  • Bastiani, M.J., du Lac, S. and Goodman, C.S. (1986) Guidance of neuronal growth cones in the grasshopper embryo. I. Recognition of a specific axonal pathway by the pCC neuron. Journal of Neuroscience, 6, 3518–31.

    PubMed  CAS  Google Scholar 

  • Bate, C.M. (1976) Embryogenesis of an insect nervous system: I. A map of the thoracic and abdominal neuroblasts in Locusta migratoria. Journal of Embryology and Experimental Morphology, 35, 107–23.

    PubMed  CAS  Google Scholar 

  • Bate, CM. and Grunewald, E.B. (1981) Embryogenesis of an insect nervous system: IL A second class of neuron precursor cell and the origin of the intersegmental connectives. Journal of Embryology and Experimental Morphology, 61, 317–30.

    PubMed  CAS  Google Scholar 

  • Beltz, B.S. and Kravitz, E.A. (1983) Mapping of serotonin-like immunoreactivity in the lobster nervous system. Journal of Neuroscience, 3, 585–602.

    PubMed  CAS  Google Scholar 

  • Bishop, C.A. and O’Shea, M. (1983) Serotonin immunoreactive neurons in the central nervous system of an insect (Periplaneta americana). Journal of Neurobiology, 14, 251–64.

    Article  PubMed  CAS  Google Scholar 

  • Bossing, T. and Technau, G.M. (1994) The fate of the CNS midline progenitors in Drosophila as revealed by a new method for single cell labelling. Development, 120, 1895–906.

    PubMed  CAS  Google Scholar 

  • Boyan, G.S. (1995) Lineage analysis as an analytic tool in the insect central nervous system: bringing order to interneurons, in Nervous Systems of Invertebrates: an Evolutionary and Comparative Approach (eds O. Breidbach and W. Kutsch), Birkhäuser Verlag, Basel, pp. 273–301.

    Chapter  Google Scholar 

  • Boyan, G.S. and Ball, E.E. (1993) The grasshopper, Drosophila and neuronal homology (advantages of the insect nervous system for the neuroscientist). Progress in Neurobiology, 41, 657–82.

    Article  PubMed  CAS  Google Scholar 

  • Breidbach, O. and Wegerhoff, R. (1993) Neuroanatomy of the central nervous system of the harvestman, Rilaena triangularis (HERBST 1799) (Arachnida; Opiliones) — principal organization, GABA-like and Serotonin-immunohistochemistry. Zoologischer Anzeiger, 230, 55–81.

    Google Scholar 

  • Broadus, J. and Doe, C.Q. (1995) Evolution of neuroblast identity: seven-up and prospero expression reveal homologous and divergent neuroblast fates in Drosophila and Schistocerca. Development, 121, 3989–96.

    PubMed  CAS  Google Scholar 

  • Broadus, J., Skeath, J.B., Spana, E.P., Bossing, T., Technau, G. and Doe, C.Q. (1995) New neuroblast markers and the origin of the aCC/pCC neurons in the Drosophila central nervous system. Mechanisms of Development, 53, 393–402.

    Article  PubMed  CAS  Google Scholar 

  • Bullock, T.H. and Horridge, G.A. (1965) Structure and Function in the Nervous Systems of Invertebrates, vol. 2, W.H. Freeman, San Francisco.

    Google Scholar 

  • Condron, B.G., Patel, N.H. and Zinn, K. (1994) engrailed controls glial/neuronal cell fate decisions at the midline of the central nervous system. Neuron, 13, 541–54.

    Article  PubMed  CAS  Google Scholar 

  • Davis, N.T. and Hildebrand, J.G. (1992) Vasopressin-immunore-active neurons and neurohaemal systems in cockroaches and mantids. Journal of Comparative Neurology, 320, 381–93.

    Article  PubMed  CAS  Google Scholar 

  • Dawes, R., Dawson, I., Falciani, F., Tear, G. and Akam, M. (1994) Dax, a locust Hox gene related to fushi-tarazu but showing no pair-rule expression. Development, 120, 1561–72

    PubMed  CAS  Google Scholar 

  • Doe, C.Q. (1992) Molecular markers for identified neuroblasts and ganglion mother cells in the Drosophila central nervous system. Development, 116, 855–63.

    PubMed  CAS  Google Scholar 

  • Doe, C.Q. and Goodman, C.S. (1985) Early events in insect neurogenesis. I Development and segmental differences in the pattern of neuronal precursor cells. Developmental Biology, 111, 193–205.

    Article  PubMed  CAS  Google Scholar 

  • Doe, C.Q. and Technau, G.M. (1993) Identification and cell lineage of individual neural precursors in the Drosophila CNS. Trends in Neuroscience, 16, 510–14.

    Article  CAS  Google Scholar 

  • Doe, C.Q., Hiromi, Y., Gehring, W.J. and Goodman, CS. (1988) Expression and function of the segmentation gene fushi-tarazu during Drosophila neurogenesis. Science, 239, 170–5.

    Article  PubMed  CAS  Google Scholar 

  • Dohle, V.W. (1964) Die Embryonalentwicklung von Glomeris marginata (Villers) im Vergleich zur Entwicklung anderer Diplopoden. Zoologische Jahrbücher Anatomie Ontogenese, 81, 241–310.

    Google Scholar 

  • Dohle, W. and Scholtz, G. (1988) Clonal analysis of the crustacean segment: the discordance between genealogical and segmental borders. Development (Supplement), 104, 147–60

    Google Scholar 

  • Elson, R.C. (1996) Neuroanatomy of a crayfish thoracic ganglion: sensory and motor roots of the walking-leg nerves and possible homologies with insects. Journal of Comparative Neurology, 365, 1–17.

    Article  PubMed  CAS  Google Scholar 

  • Goodman, C.S., Pearson, K.G. and Spitzer, N.C (1980) Electrical excitability: a spectrum of properties in the progeny of a single embryonic neuroblast. Proceedings of the National Academy of Sciences, USA, 77, 1676–80.

    Article  CAS  Google Scholar 

  • Goodman, C.S., Bate, M. and Spitzer, N.C. (1981) Embryonic development of identified neurons: origin and transformation of the H Cell. Journal of Neuroscience, 1, 94–102.

    PubMed  CAS  Google Scholar 

  • Goodman, C.S., Bastiani, M.J., Doe, C.Q., du Lac, S., Helfand, S.L., Kuwada, J.Y. and Thomas, J.B. (1984) Cell recognition during neuronal development. Science, 225, 1271–9.

    Article  PubMed  CAS  Google Scholar 

  • Gutjahr, T., Patel, N.H., Li, X., Goodman, C.S. and Noll, M. (1993) Analysis of the gooseberry locus in Drosophila embryos: gooseberry determines the cuticular pattern and activates gooseberry neuro. >Development, 118, 21–31.

    PubMed  CAS  Google Scholar 

  • Harrison, P. J., Macmillan, D.L. and Young, H.M. (1995) Serotonin immunoreactivity in the ventral nerve cord of the primitive crustacean Anaspides tasmaniae closely resembles that of crayfish. Journal of Experimental Biology, 198, 531–5.

    PubMed  Google Scholar 

  • Hartenstein, V. and Campos-Ortega, J.A. (1984) Early neurogenesis in wild-type Drosophila melanogaster. Roux’s Archives of Developmental Biology, 193, 308–25.

    Article  Google Scholar 

  • Harzsch, S. and Dawirs, R.R. (1994) Neurogenesis in larval stages of the spider crab Hyas araneus (Decapoda, Brachyura): proliferation of neuroblasts in the ventral nerve cord. Roux’s Archives of Developmental Biology, 204, 93–100.

    Article  Google Scholar 

  • Heckmann, R. and Kutsch, W. (1995) Motor supply of the dorsal longitudinal muscles. 2. Comparison of motorneuron sets in Tracheata. Zoomorphology, 115, 197–211.

    Article  Google Scholar 

  • Hertzel, G. (1984) Die Segmentation des Keimstreifens von Lithobius forficatus (L.) (Myriapoda, Chilopoda). Zoologische Jahrbücher Anatomie, 112, 369–86.

    Google Scholar 

  • Heymons, R. (1901) Die Entwicklungsgeschichte der Scolopender. Zoologica, Stuttgart, 13, 1–224.

    Google Scholar 

  • Jacobs, J.R. and Goodman, C.S. (1989) Embryonic development of axon pathways in the Drosophila CNS. 2. Behavior of pioneer growth cones. Journal of Neuroscience, 9, 2412–22.

    PubMed  CAS  Google Scholar 

  • Knoll, H.J. (1974) Untersuchungen zur Entwicklungsgeschichte von Scutigera coleoptrata L. (Chilopoda). Zoologische Jahrbücher Anatomie, 92, 47–132.

    Google Scholar 

  • Kutsch, W. and Heckmann, R. (1995) Homologous structures, exemplified by motorneurons of Mandibulata, in Nervous Systems of Invertebrates: an Evolutionary and Comparative Approach (eds O. Breidbach and W. Kutsch), Birkhäuser Verlag, Basel, pp. 221–48.

    Chapter  Google Scholar 

  • Maslin, T.P. (1952) Morphological criteria for phyletic relationships. Systematic Zoology, 1, 49–70.

    Article  Google Scholar 

  • Mathew, A.P. (1956) Embryology of Heterometrus scaber (Thorell) Arachnida. Zoological Memoirs. University of Travancore Research Institute, 1, 1–96.

    Google Scholar 

  • Mittenthal, J.E. and Wine, J.J. (1978) Segmental homology and variation in flexor motorneurons of the crayfish. Journal of Comparative Neurology, 177, 311–34.

    Article  PubMed  CAS  Google Scholar 

  • Musiol, I.M., Jirikowski, G.F. and Pohlhammer, K. (1990) Immunocytochemical characterisation of a widely spread arg8-vasopressin-like neuroendocrine system in the cricket Teleogryllus commodus Walker (Orthoptera, Insecta). Acta Histochemistry, Supplement 40, 137–42.

    CAS  Google Scholar 

  • Osorio, D., Averof, M. and Bacon, J.P. (1995) Arthropod evolution: great brains, beautiful bodies. Trends in Ecology and Evolution, 10, 449–54

    Article  PubMed  CAS  Google Scholar 

  • Otsuka, M., Kravitz, E.A. and Potter, D.D. (1967) Physiological and chemical architecture of a lobster ganglion with respect to gamma-aminobutyrate and glutamate. Journal of Neurophysiology, 30, 725–52.

    PubMed  CAS  Google Scholar 

  • Patel, N.H., Ball, E.E. and Goodman, C.S. (1992) Changing role of even-skipped during the evolution of insect pattern formation. Nature, 357, 339–42.

    Article  PubMed  CAS  Google Scholar 

  • Patel, N.P., Kornberg, T.B. and Goodman, CS. (1989) Expression of engrailed during segmentation in grasshopper and crayfish. Development, 107, 201–12.

    PubMed  CAS  Google Scholar 

  • Sandeman, D.C. (1982) Organization of the central nervous system, in The Biology of Crustacea, vol. 3 Neurobiology: Structure and Function (eds H.L. Atwood and D.C. Sandeman), Academic Press, New York, pp. 1–61.

    Google Scholar 

  • Scholtz, G. (1990). The formation, differentiation and segmentation of the post-naupliar germ band of the amphipod Gammarus pulex L. (Crustacea, Malacostraca, Peracarida). Proceedings of the Royal Society of London, B, 239, 163–211.

    Article  Google Scholar 

  • Scholtz, G. (1992) Cell lineage studies in the crayfish Cherax destructor (Crustacea, Decapoda) — germ band formation, segmentation, and early neurogenesis. Roux’s Archives of Developmental Biology, 202, 36–48.

    Article  Google Scholar 

  • Spana, E.P., Kopczynski, C, Goodman, C.S. and Doe, C.Q. (1995) Asymmetric localization of numb autonomously determines sibling neuron identity in the Drosophila CNS. Development, 121, 3489–94.

    PubMed  CAS  Google Scholar 

  • Tamarelle, M., Haget, A. and Ressouches, A. (1985) Segregation, division, and early patterning of lateral thoracic neuroblasts in the embryos of Carausius morosus Br. (Phasmida: Lonchodidae). International Journal of Insect Morphology and Embryology, 14, 307–17.

    Article  Google Scholar 

  • Thomas, J.B., Bastiani, M.J., Bate, M. and Goodman, C.S. (1984) From grasshopper to Drosophila: a common plan for neuronal development. Nature, 310, 203–7.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, K.J. and Siegler, M.V.S. (1993) Development of segment specificity in identified lineages of the grasshopper CNS. Journal of Neuroscience, 13, 3309–18.

    PubMed  CAS  Google Scholar 

  • Thompson, K.S.J., Tyrer, N.M., May, S.T. and Bacon, J.P. (1991) The vasopressin-like immunoreactive (VPLI) neurons of the locust, Locusta migratoria: I. Anatomy. Journal of Comparative Physiology A, 168, 605–17

    Article  CAS  Google Scholar 

  • Thompson, K.S.J., Zeidler, M.P. and Bacon, J.P. (1994) Comparative anatomy of serotonin-like immunoreactive neurons in isopods: putative homologues in several species. Journal of Comparative Neurology, 347, 553–69

    Article  PubMed  CAS  Google Scholar 

  • Tiegs, O.W. (1940) The embryology and affinities of the Symphyla, based on a study of Hanseniella agilis. Quarterly Journal of Microscopical Science, 82, 1–225.

    Google Scholar 

  • Tiegs, O.W. (1947) The development and affinities of the Pauropoda, based on a study of Pauropus silvaticus. Quarterly Journal of Microscopical Science, 88, 165–336.

    PubMed  CAS  Google Scholar 

  • Tyrer, N.M. and Gregory, G.E. (1982) A guide to the neuroanatomy of locust suboesophageal and thoracic ganglia. Philosophical Transactions of the Royal Society of London, B, 297, 91–123.

    Article  Google Scholar 

  • Tyrer, N.M., Turner, J.D. and Alrman, J.S. (1984) Identifiable neurons in the locust central nervous system that react with antibodies to serotonin. Journal of Comparative Neurology, 227, 313–30.

    Article  PubMed  CAS  Google Scholar 

  • Tyrer, N.M., Davis, N.T., Arbas, E.A., Thompson, K.S.J. and Bacon, J.P. (1993) The morphology of the vasopressin like immunoreactive (VPLI) neurons in many species of grasshopper. Journal of Comparative Neurology, 329, 385–401.

    Article  PubMed  CAS  Google Scholar 

  • Udolph, G., Prokop, A., Bossing, T. and Technau, G.M. (1993) A common precursor for glia and neurons in the embryonic CNS of Drosophila gives rise to segment-specific lineage variants. Development, 118, 765–75.

    PubMed  CAS  Google Scholar 

  • Uvarov, B. (1966) Grasshoppers and Locusts. A Handbook of General Acridology, Vol. 1, Cambridge University Press, Cambridge.

    Google Scholar 

  • Vallés, A.M. and White, K. (1988) Serotonin-containing neurons in Drosophila melanogaster: development and distribution. Journal of Comparative Neurology, 268, 414–28.

    Article  PubMed  Google Scholar 

  • van Haeften, T. and Schooneveld, H. (1992) Serotonin-like immunoreactivity in the ventral nerve cord of the Colorado potato beetle, Leptinotarsa decemlineata: identification of five different neuron classes. Cell and Tissue Research, 270, 405–13.

    Article  Google Scholar 

  • Veenstra, J.A. (1984) Immunocytochemical demonstration of a homology in peptidergic neurosecretory cells in the suboesophageal ganglion of a beetle and a locust with antisera to bovine pancreatic polypeptide, FMRF amide, vasopressin and a-MSH. Neuroscience Letters, 48, 185–90.

    Article  PubMed  CAS  Google Scholar 

  • Vickery, V.R. (1987) The Northern Nearctic Orthoptera: their origins and survival, in Evolutionary Biology of Orthopteroid Insects (ed. B. Baccetti), Ellis Horwood Ltd, Chichester, pp. 581–91.

    Google Scholar 

  • Wegerhoff, R. and Breidbach, O. (1995) Comparative aspects of the chelicerate nervous systems, in Nervous Systems of Invertebrates: an Evolutionary and Comparative Approach (eds O. Breidbach and W. Kutsch), Birkhäuser Verlag, Basel, pp. 159–79.

    Chapter  Google Scholar 

  • Weston, P.H. (1988) Indirect and direct methods in systematics, in Ontogeny and Systematics (ed. C.J. Humphries), Columbia University Press, New York, pp. 27–56.

    Google Scholar 

  • Whitington, P.M., Meier, T. and King, P. (1991) Segmentation, neurogenesis and formation of early axonal pathways in the centipede, Ethmostigmus rubripes (Brandt). Roux’s Archives of Developmental Biology, 199, 349–63.

    Article  Google Scholar 

  • Whitington, P.M., Leach, D. and Sandeman, R. (1993) Evolutionary change in neural development within the arthropods — axonogenesis in the embryos of two crustaceans. Development, 118, 449–61.

    PubMed  CAS  Google Scholar 

  • Whitington, P.M., Harris, K.-L. and Leach, D. (1996) Early axonogenesis in the embryo of a primitive insect, the silverfish Ctenolepisma longicaudata. Roux’s Archives of Developmental Biology, 205, 272–81.

    Article  Google Scholar 

  • Wiens, T.J. and Wolf, H. (1993) The inhibitory motorneurons of crayfish thoracic limbs — identification, structures, and homology with insect common inhibitors. Journal of Comparative Neurology, 336, 261–78.

    Article  PubMed  CAS  Google Scholar 

  • Yoshikura, M. (1955) Embryological studies on the liphistiid spider Heptathela kumurai. II. Kumamoto Journal of Science, B2, 1–86.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Whitington, P.M., Bacon, J.P. (1998). The organization and development of the arthropod ventral nerve cord: insights into arthropod relationships. In: Fortey, R.A., Thomas, R.H. (eds) Arthropod Relationships. The Systematics Association Special Volume Series, vol 55. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4904-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4904-4_26

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6057-8

  • Online ISBN: 978-94-011-4904-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics