Skip to main content

Do the integrases of LTR-retrotransposons and class II element transposases have a common ancestor?

  • Chapter
Book cover Evolution and Impact of Transposable Elements

Part of the book series: Contemporary Issues in Genetics and Evolution ((CIGE,volume 6))

Abstract

The integrases of retrotransposons (class I) and retroviruses and the transposases of bacterial type elements (class II) were compared. the DDE signature that is crucial for the integration of these elements is present in most of them, except for the non-LTR retrotransposons and members of the hAT and P super-families. Alignment of this region was used to infer the relationships between class II elements, retrotransposons, and retroviruses. the mariner-Tc1 and the Pogo-Fot1 super-families were found to be closely related and probably monophyletic, as were LTR retrotransposons and retroviruses. the IS elements of bacteria were clustered in several families, some of them being closely related to the transposase of the mariner-Tc1 super-family or to the LTR retrotransposon and retrovirus integrases. These results plus that of Xiong and Eickbush (1990) were used to develop an evolutionary history suggesting a common ancestral origin(s) for the integrases and transposases containing the DDE signature. the position of the telomeric elements (Het-A and TART) was assessed by comparing their gag and reverse transcriptase domains (when present) to those of group II introns and non-LTR retrotransposons. This preliminary analysis suggests that telomeric elements may be derived from non-LTR retrotransposons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Avancini, R.M.P., K.K.O. Walden & H.M. Robertson, 1996. The genomes of most animals have multiple members of the TCI family of transposable elements. Genetica 98: 131–140.

    Article  PubMed  CAS  Google Scholar 

  • Baker, T.A. & L. Luo, 1994. Identification of residues in the Mu transposase essential for catalysis. Proc. Natl. Acad. Sci. USA 91: 6654–6658.

    Article  PubMed  CAS  Google Scholar 

  • Bigot, Y., C. Augé-Gouillou & G. Periquet, 1996. Computer analyses reveal a hobo-like element in the nematode Caenorhabditis elegans, which presents a conserved transposase domain common with the Tc1-mariner transposon family. Gene 174: 265–271.

    Article  PubMed  CAS  Google Scholar 

  • Bushman, F.D., A. Engelman, I. Palmer, P. Wingfield & R. Craigie, 1993. Domains of the integrase protein of human immunodeficiency virus type 1 responsible for polynucleotidyl transfer and zinc binding. Proc. Natl. Acad. Sci. USA 90: 3428–3432.

    Article  PubMed  CAS  Google Scholar 

  • Calvi, B.R., T.J. Hong, S.D. Findley & W.M. Gelbart, 1991. Evidence for a common evolutionary origin of inverted repeat transposons in Drosophila and plants: hobo, Activator, and Tam3. Cell 66: 465–471.

    Article  PubMed  CAS  Google Scholar 

  • Capy, P., D. Anxolabehere & T. Langin, 1994. The strange phylogenies of transposable elements: are the horizontal transfer the only explanation? Trends in Genetics 10: 7–12.

    Article  PubMed  CAS  Google Scholar 

  • Capy, P., C. Bazin, D. Anxolabéhère & T. Langin, 1996a. Horizontal tranfers and the evolution of transposable elements, pp. 15–30 in Stability of DNA, horizontal transfer and expression of transgenes, edited by E.R. Schmidt and T. Hankeln. In Press. Springer-Verlag, Heidelberg/New York.

    Google Scholar 

  • Capy, P., R. Vitalis, T. Langin, D. Higuet & C. Bazin, 1996b. Relationships between transposable elements based upon the integrase-transposase domains: is there a common ancestor? J. Mol. Evol. 42: 359–369.

    Article  PubMed  CAS  Google Scholar 

  • Capy, P., C. Bazin, D. Hinguet & T. Langin, 1997. Dynamic and Evolution of Transposable Elements. R.G. Landes Company, Austin, Texas, USA. In press.

    Google Scholar 

  • Cavalier-Smith, T., 1991. Intronphylogeny: a new hypothesis. T.I.G. 7: 145–148.

    CAS  Google Scholar 

  • Cummings, M.P., 1994. Transmission patterns of eukaryotic transposable elements: arguments for and against horizontal transfer. TREE 9: 141–145.

    PubMed  CAS  Google Scholar 

  • Daboussi, M.J., T. Langin & Y Brygoo, 1992. Fot1, a new family of fungal transposable elements. Mol. Gen. Genet. 232: 12–16.

    Article  PubMed  CAS  Google Scholar 

  • Doak, T.G., F.P. Doerder, C.L. Jahn & G. Herrick, 1994. A proposed super-family of transposase-related genes: new members in transposon-like elements of cilliated protozoa and a common “D35E” motif. Proc. Natl. Acad. Sci USA 91: 942–946.

    Article  PubMed  CAS  Google Scholar 

  • Dyda, F., A.B. Hickman, T.M. Jenkins, A. Engelman, R. Craigie & D.R. Davies, 1994. Crystal structure of the catalytic domain of the HIV-1 integrase: similarity to other polynucleotidyl transferase. Science 266: 1981–1986.

    Article  PubMed  CAS  Google Scholar 

  • Eickbush, T.H., 1992. Transposing without ends: the non-LTR retrotransposable elements. New Biol. 4: 430–440.

    PubMed  CAS  Google Scholar 

  • Fayet, O., P. Ramond, P. Polard, M.F. Frère & M. Chandler, 1990. Functional similarities between retroviruses and the IS3 family of bacterial insertion sequences? Mol. Microbiol. 4: 1771–1777.

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein, J., 1993. PHYLIP (Phylogeny Inference Package). Version 3.5.C University of Washington: Seattle, USA.

    Google Scholar 

  • Flavell, A.J., 1992. Ty1-copia group retrotransposons and the evolution of retroelements in eukaryotes. Genetica 86: 203–214.

    Article  PubMed  CAS  Google Scholar 

  • Genetic Computer Group, 1991. Program Manual for the GCG package, Version 7. Madison Wisconsin USA.

    Google Scholar 

  • Geourjon, C.& G. Deleage, 1995. SOPMA: significant improvments in protein secondary structure prediction by prediction of from multple alignments. Comput. Applic. Biosci. 11: 681–684.

    CAS  Google Scholar 

  • Glayser, D.C., I.N. Roberts, D.B. Archer & R.P. Oliver, 1995. The isolation of Ant1, a transposable element from Aspergillus niger. Mol. Gen. Genet. 249: 432–438.

    Google Scholar 

  • Jacobson, J.W., M.M. Medhora & D.L. Hartl, 1986. Molecular structure of a somatically unstable element in Drosophila. Proc. Natl. Acad. Sci. USA 83: 8684–8688.

    Article  PubMed  CAS  Google Scholar 

  • Khan, E., J.P.G. Mack, R.A. Katf, J. Kulkosky & A.M. Skalka, 1991. Retroviral integrase domains: DNA binding and the recognition of LTR seqeunces. Nucl. Acids. Res. 19: 851–860.

    Article  PubMed  CAS  Google Scholar 

  • Kulkosky, J., K.S. Jones, R.A. Katz, J.P.G. Mack & A.M. Skalka, 1992. Residues critical for retroviral integrative recombination in a region that is highly conserved among retroviral/retrotransposon integrases and bacterial insertion sequence transposases. Mol. Cell. Biol. 12: 2331–2338.

    PubMed  CAS  Google Scholar 

  • Lemesle-Varloot, L., B. Henrissat, C. Gaboriaud, V. Bissery, A. Morgat. & J.P. Mornon, 1990. Hydrophobie cluster analysis: procedures to derive structural and functional information from 2-D-representation of protein sequences. Biochimie 72: 555–574.

    Article  PubMed  CAS  Google Scholar 

  • Lenich, A.G.& A.C. Glasgow, 1994. Amino-acid sequence homology between Piv, an essential protein in site-specific inversion in Moraxella lacunata, and transposases of an unusual family of insertion elements. J. Bact. 176: 4160–4164.

    PubMed  CAS  Google Scholar 

  • Li, W. & J.E. Shaw, 1993. A variant Tc4 transposable element in the nematode C. elegans could encode a novel protein. Nucleic Acids Res. 21: 59–67.

    Article  PubMed  CAS  Google Scholar 

  • Lohe, A.R., D.D. Aguiar & D.L. Hartl, 1997. Mutation in the mariner transposase: the D,D(35)E consensus sequence is nonfunctional. Proc. Natl. Acad. Sci. USA 94: 1293–1297.

    Article  PubMed  CAS  Google Scholar 

  • Luan, D.D., M.H. Korman, J.L. Jakubczak & T.H. Eickbush, 1993. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal traget site: a mechanism for non-LTR retrotrans-position. Cell 72: 595–605.

    Article  PubMed  CAS  Google Scholar 

  • Maurer, P., A. Réjasse, P. Capy, T. Langin & G. Riba, 1997. Isolation of the transposable element Hupfer from the entomopatho-genic fungus Beauveria bassiana, by insertion mutagenesis in the nitrate reductase structural gene 256: 195–202.

    CAS  Google Scholar 

  • Pardue, M.L., 1995. Drosophila telomeres: another way to end it all, pp. 339–370 in Telomeres, edited by C. Greider and E.H. Blackburn. Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Pardue, M.L., O.N. Danilevskaya, K. Lowenhaupt, F. Slot & K.L. Traverse, 1996. Drosophila telomeres: new views on chromosome evolution. Trends in Genetics 12: 48–52.

    Article  PubMed  CAS  Google Scholar 

  • Polard, P. & M. Chandler, 1995. Bacterial transposase and retroviral integrases. Mol. Microbiol. 15: 13–23.

    Article  PubMed  CAS  Google Scholar 

  • Rice, P. & K. Mizuuchi, 1995. Structure of the bacteriophage Mu transposase core: a common structural motif for DNA transposition and retroviral integration. Cell 82: 209–220.

    Article  PubMed  CAS  Google Scholar 

  • Robertson, H.M., 1993. The mariner transposbale element is widespread in insects. Nature 362: 241–245.

    Article  PubMed  CAS  Google Scholar 

  • Robertson, H.M., 1996. Members of thepogo superfamily of DNA-mediated transposons in the human genome. Mol. Gen. Genet. 252: 761–766.

    Article  PubMed  CAS  Google Scholar 

  • Robertson, H.M., 1997. Multiple mariner transposons in flatworms and hydras are related to those of insects. J. Heredity. 88: 195–201.

    Article  CAS  Google Scholar 

  • Robertson, H.M. & E.G. MacLeod, 1993. Five major subfamilies of mariner transposable elements in insects, including the Mediterranean fruit fly, and related arthropods. Insect Mol. Biol. 2: 125–139.

    Article  PubMed  CAS  Google Scholar 

  • Robertson, H.M., Z.L. Zumpano, A.R. Lohe & D.L. Hartl, 1996. Reconstruction of the ancient mariners of humans. Nature Genetics. 12: 360–361.

    Article  PubMed  CAS  Google Scholar 

  • Satta, Y., T. Gojobori, T. Maruyama & I.S. Chigusa, 1985. Tn3 resolvase-like sequence in P transposable element of Drosophila melanogaster genome. Jap. J. Genetics 60: 261–266.

    Article  Google Scholar 

  • Serre, M.C., C. Turlan, M.L. Bortolin & M. Chandler, 1995. Mutagenesis of the 757 transposase: importance of his-arg-tyr for activity. J. Bact. 177: 5070–5077.

    PubMed  CAS  Google Scholar 

  • Skalka, A.M., 1993. Retroviral DNA integration: lessons for transposon shuffling. Gene 135: 175–182.

    Article  PubMed  CAS  Google Scholar 

  • Smit, A.F. & A.D. Riggs, 1996. Tiggers and other DNA transposon fossils in the human genome. Proc. Natl. Acad. Sci. USA 93: 1443–1448.

    Article  PubMed  CAS  Google Scholar 

  • Swofford, D.L., 1993. Phylogenetic analysis using parsimony. Version 3.1.1. Smithsonian Institution Washington DC.

    Google Scholar 

  • Thompson, J.D., D.G. Higgins & T.J. Gibson, 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Research 22: 4673–4680.

    Article  PubMed  CAS  Google Scholar 

  • Tudor, M., M. Lobocka, M. Goodell, J. Pettitt & K. O’Hare, 1992. The pogo transposable element family of Drosophila melanogaster. Mol. Gen. Genet. 232: 126–134.

    Article  PubMed  CAS  Google Scholar 

  • Vos, J.C. & R.H.A. Plasterk, 1994. Tc1 transposase of Caenorhabditis elegans is an endonuclease with a bipartite binding domain. The EMBO J. 13:6125–6132.

    CAS  Google Scholar 

  • Warren, W.D., P.W. Atkinson & D.A. O’Brochta, 1994. The Hermes transposable element from house fly, Musca domestica, is a short inverted repeat-type element of the hobo, Ac and Tam3 (hAT) element family. Genet. Res. Camb. 64: 87–97.

    Article  CAS  Google Scholar 

  • Xiong, Y. & T.H. Eickbush, 1990. Origin and evolution of retroelements based upon their reverse transcriptase sequences. The EMBO J. 9: 3353–3362.

    CAS  Google Scholar 

  • Zimmerly, S., H. Guo, P.S. Perlmän & A. Lambowitz, 1995. Group II intron mobility ocurs by target DNA-primed reverse transcription. Cell 82: 545–554.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Pierre Capy

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Capy, P., Langin, T., Higuet, D., Maurer, P., Bazin, C. (1997). Do the integrases of LTR-retrotransposons and class II element transposases have a common ancestor?. In: Capy, P. (eds) Evolution and Impact of Transposable Elements. Contemporary Issues in Genetics and Evolution, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4898-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4898-6_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6054-7

  • Online ISBN: 978-94-011-4898-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics