Skip to main content

Structural analysis of Drosophila subobscura gypsy elements (gypsyDs)

  • Chapter
  • 371 Accesses

Part of the book series: Contemporary Issues in Genetics and Evolution ((CIGE,volume 6))

Abstract

The study of gypsy elements in Drosophila subobscura (gypsyDs) indicated that they are transcriptionally active and mobile. From the comparative analysis of a complete gypsyDs element with the canonical gypsy sequence from D. melanogaster (gypsyDm) it can be deduced that while the whole structure is maintained, the gypsyDs ORF3 encodes a non-functional Env protein. the PCR amplification and sequencing of the ORF3 from different laboratory strains and H271 clones show that all gypsyDs sequences studied have frame-shifting mutations in this region. These results support that gypsyDs elements lack functional Env proteins and consequently they lack infective ability. In this way, it can be proposed that gypsyDs elements are degenerate forms of insect retroviruses. Heterogeneous results have been obtained in the study of the presence of gypsyDm sequences in different D. subobscura strains indicating that these sequences are unstable in this species.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alberola, T.M. & R. de Frutos, 1993a. Gypsy homologous sequences in Drosophila subobscura (gypsyDs). J. Mol. Evol. 36: 127–135.

    Article  PubMed  CAS  Google Scholar 

  • Alberola, T.M. & R. de Frutos, 1993b. Distribution of gypsy sequences in Drosophila species of the obscur a subgroup. Hereditas 118: 131–137.

    Article  PubMed  CAS  Google Scholar 

  • Alberola, T.M. & R. de Frutos, 1996. Molecular structure of a gypsy element of Drosophila subobscura (gypsyDs) constituting a degenerate form of insect retroviruses. Nucleic Acids Res. 24: 914–923

    Article  PubMed  CAS  Google Scholar 

  • Britten, R.J., 1995. Active gypsy/Ty3 retrotransposon or retroviruses in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 92: 599–601.

    Article  PubMed  CAS  Google Scholar 

  • Britten, R.J., T.J. McCormack, T.L. Mears & E.H. Davidson, 1995. Gypsy/Ty3-class retrotransposons integrated in the DNA of herring, tunicate and echinoderms. J. Mol. Evol. 40: 13–24.

    Article  PubMed  CAS  Google Scholar 

  • Broome, S. & W. Gilbert, 1985. Nucleotide sequence of Rous sarcoma virus. Cell 40: 537–546.

    Article  PubMed  CAS  Google Scholar 

  • Bucheton, A., 1995. The relationship between the flamenco gene and gypsy in Drosophila: how to tame a retrovirus. Trends Genet. 11: 349–353.

    Article  PubMed  CAS  Google Scholar 

  • Burd, C.G. & G. Dreyfuss, 1994. Conserved structures and diversity of functions of RNA-binding proteins. Science 265: 615–621.

    Article  PubMed  CAS  Google Scholar 

  • Dobinson, K.F., R.E. Harris & J.E. Harrier, 1993. Grasshopper, a long terminal repeat (LTR) retroelement in the phytoopathogenic fungus Magnaporthe grisea. Mol. Plant. Microbe. Interact. 6: 114–126.

    Article  PubMed  CAS  Google Scholar 

  • Fitch, W.M. & E. Margoliash, 1967. Construction of phylogenetic trees. Science 155: 279–284.

    Article  PubMed  CAS  Google Scholar 

  • Friesen, P.D. & M.S. Nissen, 1990. Gene organization and transcription of TED, a lepidopteran retrotransposon integrated within the baucolovirus genome. Mol. Cell. Biol. 10: 3067–3077.

    PubMed  CAS  Google Scholar 

  • Friesen, P.D. & M.S. Nissen, 1990. Gene organization and transcription of TED, a Lepidopteran retrotransposon integrated within the baculovirus genome. Mol. Cell. Biol. 10: 3967–3977.

    Google Scholar 

  • de Frutos, R., K.R. Peterson & M.G. Kidwell, 1992. Distribution of Drosophila melanogaster transposable element sequences in species of the obscura group. Chromosoma 101: 293–300.

    Article  PubMed  Google Scholar 

  • Hansen, L.J., D.L. Chalker & S.B. Sandmeyer, 1988. Ty3, a yeast retrotransposon associated with tRNA genes, has homology to animal retroviruses. Mol. Cell. Biol. 8: 5245–5256.

    PubMed  CAS  Google Scholar 

  • Higgins, D.G. & P.M. Sharp, 1988. CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene 73: 237–244.

    Article  PubMed  CAS  Google Scholar 

  • Inouye, S., S. Yuki & K. Saigo, 1986. Complete nucleotide sequence and genome organization of a Drosophila transposable genetic element, 297. Eur. J. Biochem. 154: 417–425.

    Article  PubMed  CAS  Google Scholar 

  • Julien, J., S. Poirier-Hamon & Y. Brygoo, 1992. Foret1, a reverse transcriptase-like sequence in the filamentous fungus Fusarium oxysporum. Nucleic Acid. Res. 20: 3933–3937.

    Article  PubMed  CAS  Google Scholar 

  • Kim, A., C. Terzian, P. Santamaria, A. Pélisson, N. Prud’homme & A. Bucheton, 1994. Retroviruses in invertebrates: the gypsy retrotransposon is apparently an infectious retrovirus of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 91: 1285–1289.

    Article  PubMed  CAS  Google Scholar 

  • Kossack, D., 1989. The IFG copia-like element: characterization of a transposable element present in high copy number in Pinus and a history of the pines using IFG as a marker. University Microfilms. University Michigan, Ann Arbor.

    Google Scholar 

  • Lambertsson, A., S. Andersson & T. Johansson, 1989. Cloning and characterization of variable-sized Gypsy mobile elements in Drosophila melanogaster. Plasmid 22: 22–31.

    Article  PubMed  CAS  Google Scholar 

  • Lankenau, D.H., P. Huijser, E. Jansen, K. Miedema & W. Hennig, 1988. Micropia: a retrotransposon of Drosophila combining structural features of DNA viruses, retroviruses and non-viral transposable elements. J. Mol. Biol. 204: 233–246.

    Article  PubMed  CAS  Google Scholar 

  • Levin, H.L., D.C. Weaver & J.D. Boeke, 1990. Two related families of retrotransposons from Schizosaccharomycespombe. Mol. Cell. Biol. 10: 6791–6798.

    PubMed  CAS  Google Scholar 

  • Marlor, R.L., S.M. Parkhurst & V.G. Corces, 1986. The Drosophila melanogaster gypsy transposable element encodes putative gene products homologous to retroviral proteins. Mol. Cell. Biol. 6: 1129–1134.

    PubMed  CAS  Google Scholar 

  • Martin, G., D. Wiernasz & P. Schedl, 1983. Evolution of Drosophila repetitive dispersed DNA: J. Mol. Evol. 19: 203–213.

    Article  PubMed  CAS  Google Scholar 

  • McHale, M.T., I.N. Roberts, S.M. Noble, C. Beaumont, M.P. Whitehead, D. Seth & R.P. Oliver, 1992. CflT-I: and LTR-retrotransposon in Cladosporium fulvum, a fungal pathogen of tomato. Mol. Gen. Genet. 233: 337–347.

    Article  PubMed  CAS  Google Scholar 

  • Mizrokhi, L.J. & A.M. Mazo, 1991. Cloning and analysis of the mobile element gypsy from Drosophila virilis. Nucleic Acid Res 19: 913–916.

    Article  PubMed  CAS  Google Scholar 

  • Michaille, J.J., S. Mathavan, J. Gaillard & A. Garel, 1990. The complete sequence of mag, a new retrotransposon in Bombyx mori. Nucleic Acid Res. 18: 674.

    Article  PubMed  CAS  Google Scholar 

  • Modolell, J., W. Bender & M. Meselson, 1983. Drosophila melanogaster mutations suppressible by the supressor of Hairywing are insertions of a 7.3-kilobase mobile element. Proc. Acad. Sci. USA. 80: 1678–1682.

    Article  CAS  Google Scholar 

  • Montchamp-Moreau, C., S. Ronsseray, M. Jacques, M. Lehmann & D. Anxolabéhère, 1993. Distribution and conservation of sequences homologous to the 1731 retrotransposon in Drosophila. Mol. Biol. Evol. 10: 791–803.

    PubMed  CAS  Google Scholar 

  • Pélisson, A., S. U. Song, N. Prud’homme, P. A. Smith, A. Bucheton & V. G. Corces, 1994. Gypsy transposition correlates with the production of a retroviral envelope-like protein under the tissuespecific control of the Drosophila flamenco gene. EMBO J. 13: 4401–4411.

    PubMed  Google Scholar 

  • Saigo, K., W. Kugimiya, Y. Matsuo, S. Inouye, K. Yoshioka, & S. Yuki, 1984. Identification of the coding sequence for a reverse transcriptase-like enzyme in a transposable genetic element in Drosophila melanogaster. Nature 312: 659–661.

    Article  PubMed  CAS  Google Scholar 

  • Saitou, N. & M. Nei, 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol. Evol. 4: 406–425.

    PubMed  CAS  Google Scholar 

  • Scheinker, V. SH., E.R. Lozovskaya, J.G. Bishop & M.B. Evgen’ev (1990) A long terminal repeat-containing retrotransposon is mobilized during hybrid dysgenesis in Drosophila virilis. Proc. Natl. Acad. Sci. USA 87: 9615–9616.

    Article  PubMed  CAS  Google Scholar 

  • Smyth, D.R., P. Kalitsis, J.L. Joseph & J.W. Sentry, 1989. Plant retrotransposon from Lilium henryi is related to TY3 of yeast and the gypsy group of Drosophila. Proc. Natl. Acad. Sci. USA 86: 5015–5019.

    Article  PubMed  CAS  Google Scholar 

  • Song, S.U., T. Gerasimova, M. Kurkulos, J.D. Boeke & V.G. Corces, 1994. An Env-like protein encoded by a Drosophila retroelement: evidence that gypsy is an infectious retrovirus. Genes & Develop. 8: 2046–2057.

    Article  CAS  Google Scholar 

  • Springer, M.S., E.H. Davidson & R.J. Britten, 1991. Retroviral-like element in a marine invertebrate. Proc. Natl. Acad. Sci. USA 88: 8401–8404.

    Article  PubMed  CAS  Google Scholar 

  • Springer, M.S. & R. J. Britten, 1993. Phylogenetic relationships of reverse transcriptase and RNAase H sequences and aspects of genome structure in the gypsy group of retrotransposons. Mol. Biol. Evol. 10: 1370–1379.

    PubMed  CAS  Google Scholar 

  • Stacey, S.N., R.A. Lansman, H.W. Brock & T.A. Grigliatti, 1986. Distribution and conservation of mobile elements in the genus Drosophila. Mol. Biol. Evol. 3: 522–534.

    PubMed  CAS  Google Scholar 

  • Tanda, S., A.E. Shrimpton, C. Ling-Ling, H. Itayama, H. Matsubayashi, K. Saigo, Y.N. Tobari & C.H. Langley, 1988. Retroviruslike features and site specific insertions of a transposable element, torn, in Drosophila ananassae. Mol. Gen. Genet. 214: 405–411.

    Article  PubMed  CAS  Google Scholar 

  • Temin, H.M., 1980. Origin of retroviruses from cellular moveable genetic elements. Cell 21: 599–600.

    Article  PubMed  CAS  Google Scholar 

  • Tobari & C.H. Langley, 1988. Retrovirus-like features and site specific insertions of a transposable element, torn, in Drosophila ananassae. Mol. Gen. Genet. 214: 405–411.

    Article  PubMed  Google Scholar 

  • Xiong, Y. & T.H. Eickbush, 1988. Similarity of reverse transcriptaselike sequences of viruses, transposable elements, and mitochon-drial introns. Mol. Biol. Evol. 5: 675–690.

    PubMed  CAS  Google Scholar 

  • Xiong, Y. & T.H. Eickbush, 1990. Origin and evolution of retroele-ments based upon their reverse transcriptase sequences. EMBO J. 9: 3353–3362.

    PubMed  CAS  Google Scholar 

  • Yuki, S., S. Inouye, S. Ishimaru & K. Saigo, 1986. Nucleotide sequence characterization of a Drosophila retrotransposon, 412. Eur. J. Biochem. 158: 403–410.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Pierre Capy

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Alberola, T.M., Bori, L., de Frutos, R. (1997). Structural analysis of Drosophila subobscura gypsy elements (gypsyDs). In: Capy, P. (eds) Evolution and Impact of Transposable Elements. Contemporary Issues in Genetics and Evolution, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4898-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4898-6_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6054-7

  • Online ISBN: 978-94-011-4898-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics