Skip to main content

Genomic signatures: tracing the origin of retroelements at the nucleotide level

  • Chapter
Evolution and Impact of Transposable Elements

Part of the book series: Contemporary Issues in Genetics and Evolution ((CIGE,volume 6))

Abstract

We investigate the nucleotide sequences of 23 retroelements (4 mammalian retroviruses, 1 human, 3 yeast, 2 plant, and 13 invertebrate retrotransposons) in terms of their oligonucleotide composition in order to address the problem of relationship between retrotransposons and retroviruses, and the coadaptation of these retroelements to their host genomes. We have identified by computer analysis over-represented 3- through 6-mers in each sequence. Our results indicate retrotransposons are heterogeneous in contrast to retroviruses, suggesting different modes of evolution by slippage-like mechanisms. Moreover, we have calculated the Observed/Expected number ratio for each of the 256 tetramers and analysed the data using a multivariate approach. the tetramer composition of retroelement sequences appears to be influenced by host genomic factors like methylase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barrai, I., C. Scapoli, R. Barale & S. Volinia, 1990. Oligonucleotide correlations between infector and host genomes hint at evolutionary relationships. Nucleic Acids Res. 18: 3021–3025.

    Article  PubMed  CAS  Google Scholar 

  • Bestor, T.H. & B. Tycko, 1996. Creation of genomic methylation patterns. Nature Genetics 12: 363–365.

    Article  PubMed  CAS  Google Scholar 

  • Blaisdell, B.E., A.M. Campbell & S. Karlin, 1996. Similarities and dissimilarities of phage genomes. Proc. Natl. Acad. Sci. USA 93: 5854–5859.

    Article  PubMed  CAS  Google Scholar 

  • Bürge, C., A.M. Campbell & S. Karlin, 1992. Over-and underrepresentation of short oligonucleotides in DNA sequences. Proc. Natl. Acad. Sci. USA 89: 1358–1362.

    Article  PubMed  Google Scholar 

  • Capy, P., D. Anxolabéhère & T. Langin, 1994. The strange phylogenies of transposable elements: are horizontal transfers the only explanation? Trends in Genetics 10: 7–12.

    Article  PubMed  CAS  Google Scholar 

  • Dombroski, B.A., S.L. Mathias, E. Nanthakumar, A.F. Scott & H.J. Kazazian, 1991. Isolation of an active human transposable element. Science 254: 1805–1808.

    Article  PubMed  CAS  Google Scholar 

  • Escofier, B., 1979. Traitement simultané de variables qualitatives et quantitatives en analyse factorielle. Les Cahiers de l’Analyse des Données 4: 137–146.

    Google Scholar 

  • Hancock, J.M., 1995. The contribution of slippage-like processes to genome evolution. J. Mol. Evol. 41: 1038–1047.

    Article  PubMed  CAS  Google Scholar 

  • Karlin, S. & C. Bürge, 1995. Dinucleotide relative abundance extremes: a genomic signature. Trends in Genetics 11: 283–290.

    Article  PubMed  CAS  Google Scholar 

  • Kim, A., C. Terzian, P. Santamaria, A. Pélisson, N. Prud’homme & A. Bucheton, 1994. Retroviruses in invertebrates: the gypsy retrotransposon is apparently an infectious retrovirus of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 91: 1285–1289.

    Article  PubMed  CAS  Google Scholar 

  • Laprevotte, I., 1989. Scrambled duplications in the feline leukemia virus gag gene: a putative pattern for molecular evolution. J. Mol. Evol. 29: 135–148.

    Article  PubMed  CAS  Google Scholar 

  • Laprevotte, I., 1992. Mo-MuLV nucleotide sequence exhibits three levels of oligomeric repetitions, suggesting a stepwise molecular evolution. J. Mol. Evol. 35: 420–428.

    Article  PubMed  CAS  Google Scholar 

  • Laprevotte, I., S. Brouillet, C. Terzian & A. Hénaut, 1997. Retroviral oligonucleotide distributions correlate with biaised nucleotide compositions of retrovirus sequences, suggesting a duplicative stepwise molecular evolution. J. Mol. Evol. 44: 214–225.

    Article  PubMed  CAS  Google Scholar 

  • Lebart, L., A. Morineau & K.A. Warwick, 1984. Multivariate Descriptive Statistical Data. John Wiley and Sons, New York.

    Google Scholar 

  • Leeton, P.R. & D.R. Smyth, 1993. An abundant LINE-like element amplifies in the genome of Lilium speciosum. Mol. Gen. Genet. 237: 97–104.

    Article  PubMed  CAS  Google Scholar 

  • Ohno, S. & T. Yomo, 1990. Various regulatory sequences are deprived of their uniqueness by the universal rule of TA/CG deficiency and TG/CT excess. Proc. Natl. Acad. Sci. USA 87: 1218–1222.

    Article  PubMed  CAS  Google Scholar 

  • Ollivier, E., M.-O. Delorme & A. Hénaut, 1995. DosDNA occurs along yeast chromosomes, regardless of functional significance of the sequence. C.R. Acad. Sci. Paris 318: 599–608.

    PubMed  CAS  Google Scholar 

  • Richards, R.I. & G.R. Sutherland, 1994. Simple repeat DNA is not replicated simply. Nature Genetics 6: 114–116.

    Article  PubMed  CAS  Google Scholar 

  • Shpaer, E.G. & J.I. Mullins, 1990. Selection against CpG dinucleotides in lentiviral genes: a possible role of methylation in regulation of viral expression. Nucleic Acids Res. 18: 5793–5797.

    Article  PubMed  CAS  Google Scholar 

  • Springer, M.S. & R.J. Britten, 1993. Phylogenetic relationships of reverse transcriptase and RNase H sequences and aspects of genome structure in the gypsy group of retrotransposon. Mol. Biol. Evol. 10: 1370–1379.

    PubMed  CAS  Google Scholar 

  • Temin, H.M., 1980. Origin of retroviruses from cellular moveable genetic elements. Cell 21: 599–600.

    Article  PubMed  CAS  Google Scholar 

  • Thioulouse, J., 1990. MacMul and GraphMu: two Macintosh programs for the display and analysis of multivariate data. Computers and Geosciences 16: 1235–1240.

    Article  Google Scholar 

  • Wu, W., C. Palaniappan, R.A. Bambara & P.J. Fay, 1996. Differences in mutagenesis during minus strand, plus strand and strand transfer (recombination) synthesis of the HIV-1 nef gene in vitro. Nucleic Acids Res. 24: 1710–1718.

    Article  PubMed  CAS  Google Scholar 

  • Xiong, Y. & T.H. Eickbush, 1990. Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J 9: 3353–3362.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Pierre Capy

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Terzian, C., Laprevotte, I., Brouillet, S., Hénaut, A. (1997). Genomic signatures: tracing the origin of retroelements at the nucleotide level. In: Capy, P. (eds) Evolution and Impact of Transposable Elements. Contemporary Issues in Genetics and Evolution, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4898-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4898-6_27

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6054-7

  • Online ISBN: 978-94-011-4898-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics