Skip to main content

Effect of the Vibrational/Rotational Energy Partitioning on the Energy Transfer in Atom—Triatomic Molecule Collisions

  • Chapter
  • 240 Accesses

Part of the book series: Topics in Molecular Organization and Engineering ((MOOE,volume 16))

Abstract

The effect of the initial partitioning of the molecular energy between vibrational and rotational modes of a triatomic molecule on the collisional energy transfer is studied for a model atomtriatomic molecule system. We considered the collisions of thermal bath Ar atoms with SO2 molecules, and used the trajectory calculations for determining the energy transfer for three different samplings of initial conditions of the molecule. The first sampling method generated the microcanonical distribution over all states, entering into the vibrational and rotational manifolds, while two others produced distributions with relatively lower values of the rotational energies. It is shown that both the average energy transfer per collision and the mechanism of the energy exchange are significantly affected by the vibrational/rotational energy partitioning before the collisions. Relative decrease in the rotational energy results in the decrease of the averaged energy transfer and progressively emphasizes the role of active rotation as the gateway for translation-vibration energy exchange.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Oref: Chem. Phys. 187, 163 (1994).

    Article  CAS  Google Scholar 

  2. I. Oref: Adv. Chem. Kinetics and Dynamics 2B, 285 (1995).

    CAS  Google Scholar 

  3. I. Rosenblum, E. I. Dashevskaya, E. E. Nikitin, and I. Oref: Chem. Phys. 213, 243 (1996).

    Article  CAS  Google Scholar 

  4. H. W. Schranz and J. Troe: J. Phys. Chem. 90, 6168 (1986).

    Article  CAS  Google Scholar 

  5. I. Koifman, E. I. Dashevskaya, E. E. Nikitin, and J. Troe: J. Phys. Chem. 99, 15348 (1995).

    Article  CAS  Google Scholar 

  6. G. Nyman, S. Nordholm, and W. Schranz: J. Chem. Phys. 93, 6767 (1990).

    Article  CAS  Google Scholar 

  7. H. W. Schranz, S. Nordholm, and F. Freasier: Chem. Phys. 108, 69 (1986).

    Article  CAS  Google Scholar 

  8. H. W. Schranz, S. Nordholm, and G. Nyman: J. Chem. Phys. 94, 1487 (1991).

    Article  CAS  Google Scholar 

  9. L. Hase and D. G. Buckowski: Cheap. Phys. Lett. 74, 284 (1980).

    Article  CAS  Google Scholar 

  10. T. Lenzer, K. Luther, J. Troe, R. G. Gilbert, and K. F. Lim: J Chem. Phys. 103, 626 (1995).

    Article  CAS  Google Scholar 

  11. V. Bernshtein and I. Oref: J Chem. Phys. 104, 1958 (1996).

    Article  CAS  Google Scholar 

  12. H. Hippler, H. W. Schranz, and J. Troe: J. Phys. Chem. 90, 6158 (1986).

    Article  CAS  Google Scholar 

  13. K. F. Lim and R. G. Gilbert: J Phys. Chem. 94, 72 (1990).

    Article  CAS  Google Scholar 

  14. J. Jellinek and D. H. Li: Phys. Rev. Lett. 62, 241 (1989).

    Article  CAS  Google Scholar 

  15. J. Jellinek and D. H. Li: Chem. Phys. Lett. 169, 380 (1990).

    Article  CAS  Google Scholar 

  16. E. B. Wilson, J. C. Decius, and P. C. Cross: Molecular Vibrations, McGraw-Hill, New YorkToronto-London (1955).

    Google Scholar 

  17. B. Stevenson: Collisional Activation in Gases, Pergamon, New York (1967).

    Google Scholar 

  18. E. E. Nikitin: Theory of Elementary Atomic and Molecular Processes in Gases, Clarendon Press, Oxford (1974).

    Google Scholar 

  19. I. Rosenblum: Chem. Phys. Lett., submitted.

    Google Scholar 

  20. R. G. Gilbert: Austr. J. Cheap. 48, 1787 (1995).

    Article  CAS  Google Scholar 

  21. S. C. Farantos and N. Flytzanis: J. Chem. Phys. 87, 6449 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Roy McWeeny Jean Maruani Yves G. Smeyers Stephen Wilson

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rosenblum, I., Dashevskaya, E.I., Nikitin, E.E., Oref, I. (1997). Effect of the Vibrational/Rotational Energy Partitioning on the Energy Transfer in Atom—Triatomic Molecule Collisions. In: McWeeny, R., Maruani, J., Smeyers, Y.G., Wilson, S. (eds) Quantum Systems in Chemistry and Physics. Trends in Methods and Applications. Topics in Molecular Organization and Engineering, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4894-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4894-8_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6052-3

  • Online ISBN: 978-94-011-4894-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics