Skip to main content

Animal models of primary biliary cirrhosis

  • Chapter

Abstract

PBC fulfills four of the five criteria for an autoimmune disease (Table 1), but the etiology and immunopathogenesis of PBC are not well defined. A better understanding of the mechanisms responsible for bile duct destruction and hepatic fibrosis during chronic non-suppurative destructive cholangitis may lead to more effective medical therapies for this disease. However, several factors hamper the capacity to address these questions in patients. The onset of PBC is obscured by an initial preclinical/asymptomatic stage that lasts up to 20 years. Consequently, advanced stage III (fibrosis) or stage IV (cirrhosis) liver pathology is present in 50% of subjects at the time of diagnosis. In addition, the functions of T cells freshly isolated from established lesions cannot be assessed, since percutaneous liver biopsy specimens do not yield adequate numbers of cells for in-vitro studies. Also, whether the T cells cloned from the livers of patients with established PBC are representative of the primary T cells that initiate destruction of intrahepatic bile ducts and hepatic fibrosis in vivo is unclear. Moreover, MHC-matched or autologous intrahepatic bile duct cells are not available to directly examine how T cells mediate destruction of intrahepatic bile duct cells. These obstacles have led to increasing interest in animal models of PBC.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tison V, Callea F, Morisi C, et al. Spontaneous primary biliary cirrhosis’in rabbits. Liver 1982;2(2):152–61.

    PubMed  CAS  Google Scholar 

  2. Hayashi Y, Utsuyama M, Kurashima C, Hirokawa K. Spontaneous development of organ-specific autoimmune lesions in aged C57BL/6 mice. Clin Exp Immunol 1989;78:120 6.

    Google Scholar 

  3. Krams SM, Dorshkind K, Gershwin ME. Generation of biliary lesions after transfer of human lymphocytes into severe combined immunodeficient(SCID) mice. J Exp Med 1989;170(61:1919–30.

    Google Scholar 

  4. Abedi MR, Hammarstrom L, Broome U, et al. Reduction in serum levels of antimitochondrial(M2) antibodies following immunoglobulin therapy in severe combined immuno-deficient(SCID) mice reconstituted with lymphocytes from patients with primary biliary cirrhosis(PBC). Clin Exp Immunol 1996;105(2):266–73.

    Article  PubMed  CAS  Google Scholar 

  5. Ueno Y, Phillips JO, Ludwig J, et al. Development and characterization of a rodent model of immune-mediated cholangitis. Proc Natl Acad Sci USA 1996;93(1):216–20.

    Article  PubMed  CAS  Google Scholar 

  6. Kobayashi H, Yamamoto K, Yoshioka T, et al. Nonsuppurative cholangitis is induced in neonatally thymectomized mice:A possible animal model of primary biliary cirrhosis. Hepatology 1994;19(6):1424–30.

    Article  Google Scholar 

  7. Krams SM, Surh CD, Coppel RL, et al. Immunization of experimental animals with dihydrolipoamide acetyltransferase, as a purified recombinant polypeptide, generates mitochondria) antibodies but not primary biliary cirrhosis. Hepatology 1989;9(3):411–16.

    Article  PubMed  CAS  Google Scholar 

  8. Ide T, Sata M, Suzuki H, et al. An experimental animal model of primary biliary cirrhosis induced by lipopolysaccharide and pyruvatc dchydrogenase. Kurume Med J 1996;43(3):185–8.

    Article  PubMed  CAS  Google Scholar 

  9. Johnson L, Wirostko E, Wirostko W. Primary biliary cirrhosis in the mouse:induction by human mycoplasma-like organisms. Int J Exp Pathol 1990;71(5):701–12.

    PubMed  CAS  Google Scholar 

  10. Sadlack B, Lohler J, Schorle H, et al. Generalized autoimmune disease in interleukin2-deficient mice is triggered by an uncontrolled activation and proliferation of CD4+ T cells. Eur J Immunol 1995;25(11):3053–9.

    Article  PubMed  CAS  Google Scholar 

  11. Mauad TH, van Nieuwkerk CM, Dingomans KP, et al. Mice with homozygous disruption of the mdr2 P-glycoprotein gene. A novel animal model for studies of nonsuppurative inflammatory cholangitis and hepatocarcinogcncsis. Am J Pathol 1994;145(5):1237–45.

    PubMed  CAS  Google Scholar 

  12. Sadlack B, Merz H, Schorle H, et al. Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene [see comments]. Cell 1993;75(2):253–61.

    Article  PubMed  CAS  Google Scholar 

  13. Williams FH, Thiele DL. The role of major histocompatibility complex and non-major histocompatibility complex encoded antigens in generation of bile duct lesions during hepatic graft-vs.-host responses mediated by helper or cytotoxic T cells. Hepatology 1994;19(4):980–8.

    Article  PubMed  CAS  Google Scholar 

  14. Murphy GF, Whitaker D, Sprent J, Korngold R. Characterization of target injury of murine acute graft-versus-host disease directed to multiple minor histocompatibility antigens elicited by either CD4+ or CD8 + effector cells. Am J Pathol 1991:138(4):983–90.

    PubMed  CAS  Google Scholar 

  15. Okunewick JP, Kociban DL, Buffo MJ. Comparative effects of various T cell subtypes on GVHD in a murine model for MI-IC-matched unrelated donor transplant. Bone Marrow Transplant 1990;5(3):145–52.

    PubMed  CAS  Google Scholar 

  16. Onishi S, Saibara T, Nakata S, et al. Cytotoxic activity of spleen-derived T lymphocytes against autologous biliary epithelial cells in autopsy patients with primary biliary cirrhosis. Liver 1993;13(4):188–92.

    PubMed  CAS  Google Scholar 

  17. Li J, Helm K, Howell CD. Contributions of donor CD4 and CD8 cells to murine hepatic graft-versus-host disease. Transplantation 1996:62(11):1621–8.

    Article  PubMed  CAS  Google Scholar 

  18. Howell CD, De Victor D, Li J, et al. Liver T cell subsets and adhesion molecules in murine graft-versus-host disease. Bone Marrow Transplant 1995;16(1):139–45.

    PubMed  CAS  Google Scholar 

  19. Howell CD, Li J, Roper E, Kotzin BL. Biased liver T cell receptor V beta repertoire in a murine graft-versus-host disease model. J Immunol 1995;155(5):2350–8.

    PubMed  CAS  Google Scholar 

  20. Howell CD, Yoder TY, Vierling JM. Suppressor function of liver mononuclear cells isolated during murine chronic graft-vs-host disease. Il. Role of prostaglandins and interferon-gamma. Cell Immunol 1992;140(1):54–66.

    Article  PubMed  CAS  Google Scholar 

  21. Howell CD, Yoder TD, Vierling JM. Suppressor function of hepatic mononuclear inflammatory cells during murine chronic graft-vs-host disease. I. Macrophage-enriched cells mediate suppression in the liver. Cell Immunol 1991;132(1):256–68.

    Article  PubMed  CAS  Google Scholar 

  22. Howell CD, Yoder T, Claman HN, Vierling JM. Hepatic homing of mononuclear inflammatory cells isolated during murine chronic graft-vs-host disease. J Immunol 1989;143(2):476–83.

    PubMed  CAS  Google Scholar 

  23. Claman HN, Jaffee BD, Huff JC, Clark RA. Chronic graft-versus-host disease as a model for scleroderma. H. Mast cell depletion with deposition of immunoglobulins in the skin and fibrosis. Cell Immunol 1985;94(1):73–84.

    Article  PubMed  CAS  Google Scholar 

  24. Claman HN, Spiegelberg HL. Immunoglobulin dysregulation in murine graft-vs-host disease:a hyper-IgE syndrome. Clin Immunol Immunopathol 1990;56(I):46–53.

    Article  PubMed  CAS  Google Scholar 

  25. Leibnitz RR, Lipsky PE, Thiele DL. Reactivity of hybridomas derived from T cells activated in vivo during graft-versus-host disease. J Immunol 1994;153(11):4959–68.

    PubMed  CAS  Google Scholar 

  26. Dubey C, Croft M, Swain SL. Costimulatory requirements of naive CD4+ T cells. ICAM-1 or B7–1 can costimulate naive CD4 T cell activation but both are required for optimum response. J Immunol 1995;155(I):45–57.

    PubMed  CAS  Google Scholar 

  27. Croft M, Swain SL. Recently activated naive CD4 T cells can help resting B cells, and can produce sufficient autocrine IL-4 to drive differentiation to secretion of T helper 2-type cytokines. J Immunol 1995;154(9):4269–82.

    PubMed  CAS  Google Scholar 

  28. McArthur JG, Raulet DH. CD28-induced costimulation of T helper type 2 cells mediated by induction of responsiveness to interlcukin 4. J Exp Med 1993;178(5):1645–53.

    Article  PubMed  CAS  Google Scholar 

  29. Petro TM, Chen SS, Panther RB. Effect of CDSO and CD86 on T cell cytokine production. Immunol Invest 1995;24(6):965–76.

    Article  PubMed  CAS  Google Scholar 

  30. Shanafelt MC, Soderberg C, Allsup A, et al. Costimulatory signals can selectively modulate cytokine production by subsets of CD4+ T cells. J Immunol 1995;154(4):1684–90.

    PubMed  CAS  Google Scholar 

  31. Blazar BR, Taylor PA, Panoskaltsis-Mortari A, et al. Blockade of CD40 ligand-CD40 interaction impairs CD4+ T cell-mediated alloreactivity by inhibiting mature donor T cell expansion and function after bone marrow transplantation. J Immunol 1997;158(1):29–39.

    PubMed  CAS  Google Scholar 

  32. Blazar BR, Sharpe AH, Taylor PA, et rd. Infusion of anti-B7.1(CD80) and anti-B7.2(CD86) monoclonal antibodies inhibits murinc graft-versus-host disease lethality in part via direct effects on CD4+ and CDS+ T cells. J Immunol 1996;157(8):3250–9.

    PubMed  CAS  Google Scholar 

  33. Korngold R. Lethal graft-versus-host disease in mice directed to multiple minor histocompatibility antigens:features of CD8+ and CD4 + T cell responses. Bone Marrow Transplant I 992;9(5):355–64.

    Google Scholar 

  34. Wallace PM, Johnson JS, MacMaster JF, et al. CTLA4Ig treatment ameliorates the lethality of murine graft-versus-host disease across major histocompatibility complex barriers. Transplantation 1994;58(5):602–10.

    Article  PubMed  CAS  Google Scholar 

  35. Schlegel PG, Vaysburd M, Chen Y, et al. Inhibition of T cell costimulation by VCAM-I prevents murine graft-versus-host disease across minor histocompatibility barriers.J Immunol 1995;155(8):3856–65.

    PubMed  CAS  Google Scholar 

  36. Blazar BR, Taylor PA, Panoskaltsis-Mortari A, et al. Coblockade of the LFAI:ICAM and CD28/CTLA4:B7 pathways is a highly effective means of preventing acute lethal graftversus-host disease induced by fully major histocompatibility complex-disparate donor grafts. Blood 1995;85(9):2607–18.

    PubMed  CAS  Google Scholar 

  37. Blazar BR, Taylor PA, Linsley PS, Vallera DA. In vivo blockade of CD28/CTLA4:B7/BBI interaction with CTLA4-Ig reduces lethal murine graft-versus-host disease across the major histocompatibility complex barrier in mice. Blood 1994;83(12):3815–25.

    PubMed  CAS  Google Scholar 

  38. Kimura T, Suzuki K, Inada S, et al. Monoclonal antibody against lymphocyte function-associated antigen 1 inhibits the formation of primary biliary cirrhosis-like lesions induced by murine graft-versus-host reaction. Hepatology 1996;24(4):888–94.

    Article  PubMed  CAS  Google Scholar 

  39. Via CS, Rus V, Gately M K, Finkelman FD. IL-12 stimulates the development of acute graftversus-host disease in mice that normally would develop chronic, autoimmune graft-versushost disease. J Immunol 1994;153(9):4040–7.

    PubMed  CAS  Google Scholar 

  40. Williamson E, Garside P, Bradley JA, Mowat AM. IL-12 is a central mediator of acute graft-versus-host disease in mice. J Immunol 1996;157(2):689–99.

    PubMed  CAS  Google Scholar 

  41. Rus V, Svetic A, Nguyen P, et al. Kinetics of Thl and Th2 cytokine production during the early course of acute and chronic murine graft-versus-host disease. Regulatory role of donor CD8+ T cells. J Immunol 1995;155(5):2396–406.

    PubMed  CAS  Google Scholar 

  42. Krenger W, Snyder K, Smith S, Ferrara JL. Effects of exogenous interleukin-10 in a murine model of graft-versus-host disease to minor histocompatibility antigens. Transplantation 1994;58(1):0251–7.

    Google Scholar 

  43. Krenger W, Snyder KM, Byon JC, et al. Polarized type 2 alloreactive CD4+ and CD8+ donor T cells fail to induce experimental acute graft-versus-host disease. J Immunol 1995;155(2):585–93.

    PubMed  CAS  Google Scholar 

  44. Sykes M, Szot GL, Nguyen PL, Pearson DA. Intcrleukin-12 inhibits murine graft-versushost disease. Blood 1995;86(6):2429–38.

    PubMed  CAS  Google Scholar 

  45. Fowler DH, Kurasawa K, Smith R, et al. Donor CD4-enriched cells of Th2 cytokine phenotype regulate graft-versus-host disease without impairing allogencic engraftment in sublethally irradiated mice. Blood 1994;84(10):3540–9.

    PubMed  CAS  Google Scholar 

  46. Ushiyama C, Hirano T, Miyajima H, et al. Anti-IL-4 antibody prevents graft-versus-host disease in mice after bone marrow transplantation. The IgE allotype is an important marker of graft-versus-host disease. J Immunol 1995;154(6):2687–96.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Howell, C.D., Li, J., Chen, W. (1998). Animal models of primary biliary cirrhosis. In: Lindor, K.D., Heathcote, E.J., Poupon, R. (eds) Primary Biliary Cirrhosis. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4884-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4884-9_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6047-9

  • Online ISBN: 978-94-011-4884-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics