Skip to main content

Part of the book series: Cellular Origin and Life in Extreme Habitats ((COLE,volume 1))

  • 810 Accesses

Abstract

The first life form, a proto-cell, is believed to have evolved in the primitive sea. The sea nurtured early life supplying both inorganic and organic materials. However, it is not clear whether all the minerals positively supported proto-cells, although the mineral elements required by present-day cells are abundant in seawater. Geological evidence suggests that sea water accumulated upon the cooling of dense vapor in the atmosphere which derived from active volcanoes on the primitive earth. Therefore, we can assume that very little or no sodium chloride was present in primitive seawater when the proto-cells evolved. However, it is a fact that seawater currently contains on average, 3.5% sodium chloride. The increase in the sodium chloride concentration likely resulted from:(i) extraction from the solid earth, which has been estimated to contain 460 sodium atoms per 10,000 atoms of silicon (Gymer, 1973). (ii) evaporation of water into the atmosphere. Water evaporation from the surface of lakes is known to increase the sodium chloride concentration. For example, the salt concentration reaches saturation (about 35% at 20°C) in some area of the Dead Sea and Great Salt Lake. However, halophilic bacteria and certain other organisms flourish in this type of salt water.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., and Watson, J. D. (1994) Molecular Biology of the Cell (3rd Ed.), Garland Publishing, Inc., New York.

    Google Scholar 

  • Britten, R. J. and McClure, E. T. (1962) Bacteriol. Rev. 26, 22–335.

    Google Scholar 

  • Chen, C. C., Tsuchiya, Yamane, Y., Wood, J. M. and Wilson, T. H. (1985) J. Membrane Biol. 84, 157–164.

    Article  CAS  Google Scholar 

  • Csonka, L. N. (1983) J. Bacteriol. 151, 1433–1443.

    Google Scholar 

  • Dundas, I. E. D. (1977) In: Adv. Microbial Physiol. 15, 85–120.

    Article  CAS  Google Scholar 

  • Gymer, R. G. (1973) Cited in De Witt (1977) Biology of the Cell — An Evolutionary Approach, W. B. Saunders Company, Philadelphia.

    Google Scholar 

  • Hayzer, D. S. and Leisinger, T. (1980) J. Gen. Microbiol. 118, 287–293.

    PubMed  CAS  Google Scholar 

  • Krieg, N. R. and Holt, J. G. (eds.) (1984) Bergey’s Manual of Systematic Bacteriolgy vol. 1, Williams & Wilkins, Baltimore, pp. 261, 262, and 402.

    Google Scholar 

  • Kushner, D. J. (1978) In: D. J. Kushner (ed.) Microbial Life in Extreme Environments, Academic Press, London.

    Google Scholar 

  • Larsen, H. (1962) Halophilism, In I. C. Gunsalus and R. Y. Stanier (eds.) The Bacteria: A Treatise on Structure and Function, vol. 4, Academic Press, New York, pp. 297–342.

    Google Scholar 

  • Larsen, H. (1967) Adv. Microbial Physiol. 1, 97–132.

    Article  CAS  Google Scholar 

  • Measures, J. C. (1975) Nature 257, 398–400.

    Article  PubMed  CAS  Google Scholar 

  • Midgley, M. (1987) Microbial Science 4, 125–127.

    CAS  Google Scholar 

  • Morishita, H. (1980) In H. Morishita and M. Masui (eds.) Salt Environment, Japanese Conference on Halophilic Microbiology, pp. 93–109.

    Google Scholar 

  • Nakamura, H. (1965) J. Bacteriol. 90, 8–14.

    PubMed  CAS  Google Scholar 

  • Nakamura, H. (1968) J. Bacteriol. 96, 987–996.

    PubMed  CAS  Google Scholar 

  • Nakamura, H. (1977) J. Gen. Microbiol. 102, 221–222.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura, H. (1979a) J. Gen. Microbiol. 113, 425–427.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura, H. (1979b) Viva Origino 8, 1–9.

    Google Scholar 

  • Nakamura, H. (1980) Microbial Evolution, Baifukan Publisher, Tokyo.

    Google Scholar 

  • Nakamura, H., Tojo, T. and Greenberg, J. (1975) J. Bacteriol. 122, 874–879.

    PubMed  CAS  Google Scholar 

  • Nakamura, H., Yokomura, E., Hase, A. and Suganuma, A. (1981) Plant Cell Physiol. 23, 1141–1148.

    Google Scholar 

  • Nakamura, H., Yokomura, E. and Hirayoshi, K. (1982) J. Gen. Microbiol. 128, 3067–3070.

    PubMed  CAS  Google Scholar 

  • Nakamura, H. and Shinya, T. (1985) J. Gen. Microbiol. 131, 1639–1647.

    PubMed  CAS  Google Scholar 

  • Nikaido, H. (1994) Science 264, 382–388.

    Article  PubMed  CAS  Google Scholar 

  • Wood, J, M. (1981) J. Bacteriol. 146, 895–901.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Joseph Seckbach

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nakamura, H. (1999). Salt Sensitivity of Cells. In: Seckbach, J. (eds) Enigmatic Microorganisms and Life in Extreme Environments. Cellular Origin and Life in Extreme Habitats, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4838-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4838-2_29

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1863-3

  • Online ISBN: 978-94-011-4838-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics