Skip to main content

Pseudo-Gap and Crossover from the 2D Heisenberg to the Even-Leg Spin-Ladder Regime in Underdoped Cuprates

  • Chapter
Book cover Symmetry and Pairing in Superconductors

Part of the book series: NATO Science Series ((ASHT,volume 63))

  • 229 Accesses

Abstract

The temperature dependent resistivity ρ(T) of high-T c cuprates at temperatures above the pseudogap regime has recently been interpreted in the framework of the two-dimensional (2D) Heisenberg model [1]. The approach proposed in Ref. 1 is based on three basic assumptions: (i) the dominant scattering mechanism in high-T c ’s in the whole temperature range is of magnetic origin; (ii) the specific temperature dependence of the resistivity ρ(T) can be described by the inverse quantum conductivity σ-1 with the inelastic length L φ being fully controlled, via a strong interaction of holes with Cu2+ spins, by the magnetic correlation length ξ m , and, finally, (iii) the proper 2D expressions should be used for calculating the quantum conductivity with L φ∼ξ m .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Moshchalkov V.V., Sol. St. Comm. 86 (1993) 715.

    Article  CAS  Google Scholar 

  2. Moshchalkov V.V., cond-mat / 9802281

    Google Scholar 

  3. Abrikosov A.A., Fundamentals of the Theory of Metals, (North-Holland, Amsterdam) 1988.

    Google Scholar 

  4. Greven M., Birgeneau R.J. and Wiese U.-J., Phys. Rev. Lett. 77 (1996) 1865.

    Article  CAS  Google Scholar 

  5. Nagata T. et al, Physica C 282–287 (1995) 153.

    Google Scholar 

  6. Takano M. et al, Physica C 282–287 (1995) 149.

    Google Scholar 

  7. Batlogg B., Physica C 282–287 (1997) XXIV.

    Article  Google Scholar 

  8. Emery V.J., Kivelson S.A., and Zachar O., Physica C 282–287 (1997) 174.

    Article  Google Scholar 

  9. Zaanen J. and van Saarloos W., Physica C 282–287 (1997) 178.

    Article  Google Scholar 

  10. Tranquada J.M., Physica C 282–287 (1997) 166; Tranquada J.M. et al., Nature 375 (1995) 561. Tranquada J.M. et al., Phys. Rev. Lett. 73 (1997) 338.

    Article  Google Scholar 

  11. Dagotto E. and Rice T.M., Science 271 (1996) 618.

    Article  CAS  Google Scholar 

  12. Karpinski J., Kaldis E., Jilek E., Rusiecki S., Bucher B., Nature 336 (1988) 660.

    Article  CAS  Google Scholar 

  13. Bucher B., Steiner P., Wachter P., Physica B 199–200 (1994) 268.

    Article  Google Scholar 

  14. Wuyts B., Moshchalkov V.V. and Bruynseraede Y., Phys. Rev. B 53 (1996) 9418.

    Article  CAS  Google Scholar 

  15. Troyer M., Tsunetsugu H. and Würtz D., Phys. Rev. B 50 (1994) 13515.

    Article  CAS  Google Scholar 

  16. Schrieffer J. R, Zhang S.C. and Wen X.G., Phys. Rev. Lett. 60 (1988) 944.

    Article  CAS  Google Scholar 

  17. Maekawa S., Tohyama T., Physica C 282–287 (1997) 286.

    Article  Google Scholar 

  18. Ding M. et al., Phys. Rev Lett. 76 (1996) 1533.

    Article  CAS  Google Scholar 

  19. Anderson P.W., Science 235 (1987) 1196.

    Article  CAS  Google Scholar 

  20. Fukuyama H. and Kohno H., Physica C 282–287 (1997) 124.

    Article  Google Scholar 

  21. Chakravarty S., Science 278 (1997) 1412.

    Article  CAS  Google Scholar 

  22. Kashine J. and Yonemitsu K., Journ. Phys. Soc. Jap. 66 (1997) 3725.

    Article  Google Scholar 

  23. Ando Y. et al., Phys. Rev. Lett. 77 (1996) 2065.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Moshchalkov, V.V., Trappeniers, L., Vanacken, J. (1999). Pseudo-Gap and Crossover from the 2D Heisenberg to the Even-Leg Spin-Ladder Regime in Underdoped Cuprates. In: Ausloos, M., Kruchinin, S. (eds) Symmetry and Pairing in Superconductors. NATO Science Series, vol 63. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4834-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4834-4_29

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5521-2

  • Online ISBN: 978-94-011-4834-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics