Skip to main content

Vortex Lattice Melting Theories as an Example of Science Fiction

  • Chapter
  • 232 Accesses

Part of the book series: NATO Science Series ((ASHT,volume 63))

Abstract

It is shown that the popular concept of vortex lattice melting has appeared as a consequence of incorrect notions about the Abrikosov state and an incorrect definition of the phase coherence. The famous Abrikosov solution gives qualitatively incorrect results. The transition to the Abrikosov state must be first order in an ideal (without disorder) superconductor. Such a sharp transition is observed in bulk superconductors with weak disorder below H c2. No experimental evidence of the vortex lattice melting exists now. The absence of a sharp transition in thin films with weak disorder is interpreted as due to the absence of long-rang phase coherence down to very low magnetic field. The observed smooth phase coherence appearance in superconductors with strong disorder is explained by an increase of the effective dimensionality. It is proposed to return to the Mendelssohn model for the explanation of the resistive properties of superconductors with strong disorder. It is conjectured that the Abrikosov state is not a vortex lattice with crystalline long-range order.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.H. Brandt, Rep. Progr. Phys. 58, 1465 (1995).

    Article  CAS  Google Scholar 

  2. D.R. Nelson, Nature 375, 356 (1995).

    Article  CAS  Google Scholar 

  3. D. Cribier, B. Jacrot, L.M. Rao, and B. Farnoux, Phys. Lett. 9, 106 (1964); U. Essmann and H. Trauble, Phys. Lett. A 24, 526 (1967).

    Article  CAS  Google Scholar 

  4. R.P. Huebener, Magnetic Flux Structures in Superconductors (Springer-Verlag, Berlin Heidelberg New York, 1919).

    Google Scholar 

  5. D. Bishop, Nature 382, 760 (1996).

    Article  CAS  Google Scholar 

  6. F. London and H. London, Proc. Roy. Soc. (London) A 149, 71 (1935).

    Article  Google Scholar 

  7. W. Meissner and R. Ochsenfeld, Naturwiss. 21, 787 (1933).

    Article  Google Scholar 

  8. A.I. Larkin, Zh. Eksp. Teor. Fiz. 58, 1466 (1970) (Sov. Phys.-JETP 31, 784 (1970)).

    Google Scholar 

  9. A.A. Abrikosov, Zh. Eksp. Teor. Fiz. 32, 1442 (1957) (Sov. Phys.-JETP 5, 1174 (1957)).

    Google Scholar 

  10. A.S. Fetter and P.C. Hohenberg, Phys. Rev. 147, 140 (1966); 159, 330 (1967); E. Cohen and A. Schmid, J. Low Temp. Phys. 17, 331 (1974).

    Google Scholar 

  11. W.H. Kleiner, L.M. Roth, and S.H. Autler, Phys. Rev. A 133, 1226 (1964).

    Google Scholar 

  12. K. Maki and H. Takayama, Prog. Theor. Phys. 46, 1651 (1971).

    Article  Google Scholar 

  13. K. Maki and R.S. Thompson, Physica C 162–164, 275 (1989).

    Article  Google Scholar 

  14. D.R. Nelson, Phys. Rev. Lett. 60, 1973 (1988); D.R. Nelson and H.S. Seung, Phys. Rev. B 39, 9153 (1989); A. Houghton, R.A. Pelcovits, and A. Sudbo, Phys. Rev. B 40, 6763 (1989); E.H. Brandt, Phys. Rev. Lett. 63, 1106 (1989); Physica C 165-166, 1129 (1990); Physica B 160, 91 (1991); S. Sengupta et al., Phys. Rev. Lett. 67, 3444 (1991); G.I. Menon and C. Dasgupta, Phys. Rev. Lett. 73, 1023 (1994).

    Article  CAS  Google Scholar 

  15. F. Lindemann, Phys. Z. (Leipzig) 11, 69 (1910).

    Google Scholar 

  16. B.A. Hubermann and S. Doniach, Phys. Rev. Lett. 43, 950 (1979); D.S. Fisher, Phys. Rev. B 22, 1190 (1980); M.V. Feigel’man, V.B. Geshkenbein, and A.I. Larkin, Physica C 167, 177 (1990); H. Ma and S.T. Chui, Phys. Rev. Lett. 67, 505(1991); 68, 2528(1992).

    Article  Google Scholar 

  17. G. Blatter, M.V. Feigel’man, V.B. Geshkenbein, A.I. Larkin, and V.M. Vinokur, Rev. Mod. Phys. 66, 1125 (1994).

    Article  CAS  Google Scholar 

  18. Z. Tesanovic, Phys. Rev. B 44, 12635 (1991).

    Article  Google Scholar 

  19. G.J. Ruggeri and D.J. Thouless, J. Phys. F 6, 2063 (1976)

    Article  Google Scholar 

  20. E. Brezin, A. Fujita, and S. Hikami, Phys. Rev. Lett. 65, 1949 (1990).

    Article  Google Scholar 

  21. Z. Tesanovic and L. Xing, Phys. Rev. Lett. 67, 2729 (1991); Y. Kato and N. Nagaosa, Phys. Rev. B 47, 2932 (1993); Phys. Rev. B 48, 7383 (1993); J. Hu and A.H. MacDonald, Phys. Rev. Lett 71, 432 (1993); J. Hu and A.H. MacDonald, Phys. Rev. B 52, 1286 (1995); R. Sasik and D. Stroud, Phys. Rev. Lett 72, 2462 (1994); Phys. Rev. Lett 75, 2582 (1995); Phys. Rev. B 48, 9938 (1993); Phys. Rev. B 40, 16074 (1994); Phys. Rev. B 52, 3696 (1995).

    Article  CAS  Google Scholar 

  22. M.A. Moore, Phys. Rev. B 45, 7336 (1992); N. Wilkin and M.A. Moore, Phys. Rev. B 48, 3464 (1993); J.A. O’Neill and M.A. Moore, Phys. Rev. Lett. 60, 2582 (1992); J.A. O’Neill and M.A. Moore, Phys. Rev. B 48, 374 (1993); H.H. Lee and M.A. Moore, Phys. Rev. B 49, 9240 (1994).

    Article  Google Scholar 

  23. R. Ikeda, J. Phys. Soc. Jpn. 65, 3998 (1996); R. Sasik, D. Stroud and Z. Tesanovic, Phys. Rev. B 51, 3041 (1995).

    Article  CAS  Google Scholar 

  24. V.A. Marchenko and A.V. Nikulov, Pisma Zh. Eksp. Teor. Fiz. 34, 19 (1981) (JETP Lett. 34, 17 (1981)).

    Google Scholar 

  25. W.K. Kwok et al., Phys. Rev. Lett. 64, 966 (1990); H. Safar et al., Phys. Rev. Lett. 60, 824 (1992); W.K. Kwok et al., Phys. Rev. Lett. 69, 3370 (1992); W. Jiang et al., Phys. Rev. Lett. 74, 1438 (1995).

    Article  CAS  Google Scholar 

  26. A.V. Nikulov, Supercond. Sci. Technol. 3, 377 (1990).

    Article  Google Scholar 

  27. A.V. Nikulov, in Fluctuation Phenomena in High Temperature Superconductors (Ed. M. Ausloos and A.A. Varlamov) (Kluwer, Dordrecht,1997) p. 271.

    Chapter  Google Scholar 

  28. A.V. Nikulov, Thesis, Institute of Solid State Physics, Chernogolovka, 1985.

    Google Scholar 

  29. A.V. Nikulov, D. Yu. Remisov, and V.A. Oboznov, Phys. Rev. Lett. 75, 2586 (1995).

    Article  CAS  Google Scholar 

  30. A.V. Nikulov, S.V. Dubonos, and Y.I. Koval, J. Low Temp. Phys. 100, 643 (1997)

    Google Scholar 

  31. D.A. Huse and S.N. Majumdar, Phys. Rev. Lett. 71, 2473 (1993); Chung-Yu Mou, R. Wortis, A.T. Dorsey, and D.A. Huse, Phys. Rev. B 51, 6575 (1995).

    Article  CAS  Google Scholar 

  32. M. Tinkham, Introduction to Superconductivity (McGraw-Hill, New York, 1975)

    Google Scholar 

  33. P.A. Lee and S.R. Shenoy, Phys. Rev. Lett. 28, 1025 (1972).

    Article  Google Scholar 

  34. A. Schilling et al., Nature 382, 791 (1996).

    Article  CAS  Google Scholar 

  35. M.H. Theunissen and P.H. Kes, Phys. Rev. B 55, 15183 (1997).

    Article  CAS  Google Scholar 

  36. J.A. Fendrich et al., Phys. Rev. Lett. 74, 1210 (1995).

    Article  CAS  Google Scholar 

  37. V.A. Marchenko and A.V. Nikulov, Zh. Eksp. Teor. Fiz. 80, 745 (1981) (Sov. Phys.-JETP 53, 377 (1981)).

    CAS  Google Scholar 

  38. Y.B. Kim, C.F. Hempsted, and A.R. Strnad, Phys. Rev. 131, 2486 (1963); Phys. Rev. 130, A1163 (1965).

    Article  Google Scholar 

  39. L.P. Gor’kov and N.B. Kopnin, Usp. Fiz. Nauk 116, 413 (1975) (Sov. Phys. — Uspeki 18, 496 (1976)).

    Article  CAS  Google Scholar 

  40. A.V. Nikulov, Phys. Rev. B 52, 10429 (1995).

    Article  Google Scholar 

  41. A.V. Nikulov, http://wwww.publish.aps.org/eprint/gateway/epget/apsl998mar20-002.

  42. K. Mendelssohn, Proc. Roy. Soc. 152A, 34 (1935).

    Google Scholar 

  43. L.W. Grunberg and L. Gunther, Phys. Lett. A 38, 463 (1972).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nikulov, A.V. (1999). Vortex Lattice Melting Theories as an Example of Science Fiction. In: Ausloos, M., Kruchinin, S. (eds) Symmetry and Pairing in Superconductors. NATO Science Series, vol 63. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4834-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4834-4_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5521-2

  • Online ISBN: 978-94-011-4834-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics