Skip to main content

Structure and Function of Phycobilisomes

  • Chapter
Concepts in Photobiology

Summary

The phycobilisome, a supramolecular assembly of phycobiliproteins and a unique lightcapturing system found in cyanobacteria and red algae, is discussed from the structural, functional and regulational points of view. Structure-function relationship of phycobiliproteins was developed based on the fine crystal structure with a resolution better than 2 Å, and energy transfer pathways and mechanism were shown by the timeresolved spectroscopy and theoretical consideration. Phycobiliproteins are assigned to the globin family, thus the origin and evolutionary linkage of globin family including phycobiliproteins is discussed, because it is widely accepted that cyanobacteria appeared on the earth at least 2.7 billion years ago. Biosynthesis of phycobiliproteins and assembly process to phycobilisomes is mainly regulated by the light condition for growth. Recently, it is known that the two-component system for the signal transduction in prokaryote is involved in this regulation. Furthermore, a regulation of reaction center content in cells by the light condition and stoichiometry between the reaction center II and phycobilisomes is phenomenologically stated and its possible regulatory mechanism is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe, S., Murakami, A., Ohki, K., Aruga, Y. and Fujita, Y. 1994. Changes in stoichiometry among PSI, PSII and Cyt b 6-f complexes in response to chromatic light for cell growth observed with the red alga Porphyra yezoensis. Plant Cell Physiol. 35: 901–906.

    Google Scholar 

  • Bishop, J.E., Rapoport, H., Klotz, A.V., Chan, C.F., Glazer, A.N., Füglistaller, P. and Zuber, H. 1987. Chromopeptides from phycoerythrocyanin. Structure and linkage of the three bilin groups. J. Am. Chem. Soc. 109: 875–881.

    Article  CAS  Google Scholar 

  • Bogorad, L. 1975. Phycobiliproteins and complementary chromatic adaptation. Ann. Rev. Plant Physiol. 26: 369–401.

    Article  CAS  Google Scholar 

  • Brody, M. and Emerson, R. 1959. The quantum yield of photosynthesis in Porphyridium cruentum and the role of chlorophyll a in the photosynthesis of red algae. J. Gen. Physiol. 43: 251–264.

    Article  PubMed  CAS  Google Scholar 

  • Brejc, K., Ficner, R., Huber, R. and Steinbacher, S. 1995. Isolation, crystallization, crystal structure analysis and refinement of allopycocyanin from the cyanobacterium Spirulina platensis at 2.3 Å resolution. J. Mol. Biol. 249: 424–440.

    Article  PubMed  CAS  Google Scholar 

  • Bryant, D.A. 1982. Phycoerythrocyanin and phycoerythrin: Properties and occurrence in cyanobacteria. J. Gen. Microbiol. 128: 835–844.

    CAS  Google Scholar 

  • Chang, W., Jiang, T., Wan, Z., Zhang, J. Yang, Z. and Liang, D. 1996. Crystal structure of R-phycoerythrin from Polysiphonia urceolata at 2.8 Å resolution. J. Mol. Biol. 262: 721–731.

    Article  PubMed  CAS  Google Scholar 

  • Chapman, D.J., Cole, W.J. and Siegelman, H.W. 1967. Chromophores of allophycocyanin and R-phycocyanin. Biochem., J. 105: 903–905.

    CAS  Google Scholar 

  • Chiang, G.C., Schaefer, M.R. and Grossman A.R. 1992. Complementation of a red lightindifferent cyanobacterial mutants. Proc. Natl. Acad. Sci. USA 89: 9415–9419.

    Article  PubMed  CAS  Google Scholar 

  • Cunningham, F.X. Jr., Dennenberg, R.J., Jursinic, P.A. and Gantt, E. 1990. Growth under red light enhances photosystem II relative to photosystem I and phycobilisomes in the red alga Porphyridium cruentum.Plant Physiol. 93: 888–895.

    Article  PubMed  CAS  Google Scholar 

  • Dexter, D.L. 1953. A theory of sensitized luminescence in solids. J. Chem. Phys 21: 836–850.

    Article  CAS  Google Scholar 

  • Dürring, M., Huber, R., Bode, W., Rümbeli, R. and Zuber, H. 1990. Refined three-dimensional sturcture of phycoerythrocyanin from the cyanobacterium Mastigocladus laminosus at 2.7 Å. J. Mol. Biol. 211: 633–644.

    Article  Google Scholar 

  • Dürring, M., Schmidt, G.B. and Huber, R. 1991. Isolation, crystallization, crystal structure analysis and refinement of constitutive C-phycocyanin from the chromatically adapting cyanobacterium Fremyella diplosiphon at 1.66 Å resolution. J. Mol. Biol. 217: 577–592.

    Article  Google Scholar 

  • Engelman, T.W. 1883. Farbe und Assimilation. Botanisch. Zeitung. 41, 1–13.

    Google Scholar 

  • Esenbeck, N.V. 1836. Ueber einen blau-rothen Farbstoff, de sich bei der Zersetzung von Oscillatorien bildet. Ann. Pharm. 18: 75–82.

    Article  Google Scholar 

  • Fairchild, C.D., Zhao, J., Zhou, S.E., Colson, D.A., Bryant, D.A. and Glazer, A.N. 1992. Phycocyanin a-subunit phycoeyanobilin lyase. Proc. Natl. Acad. Sci. USA 89: 7017–7021.

    Article  PubMed  CAS  Google Scholar 

  • Ficner, R., Lobeck, K., Schmidt, G. and Huber, R. 1992. Isolation, crystallization, crystal structure analysis and refinement of B-phycoerythrin from the red alga Porphyridium sordidum at 2.2 Å resolution. J. Mol. Biol. 228: 935–950.

    Article  PubMed  CAS  Google Scholar 

  • Förster, T. 1948. Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann. Physik, Leipzig 2: 55–75.

    Article  Google Scholar 

  • Frank, G., Sidler, W., Widmer, H. and Zuber, H. 1978. The complete amino-acid sequence of both subunits of C-phycocyanin from the cyanobacterium Mastigocladus laminosus. Hoppe-Seyler’s Z. Physiol. Chem. 359: 1491–1507.

    Article  PubMed  CAS  Google Scholar 

  • Füglistaller, P., Suter, F. and Zuber, H. 1983. The complete amino-acid sequence of both subunits of phycoerythrocyanin from the thermophilic cyanobacterium Mastigocladus laminosus.Hoppe Seyler’s Z. Physiol. Chem. 364: 691–712.

    Article  PubMed  Google Scholar 

  • Füglistaller, P., Rümbeli, R., Suter, F. and Zuber, H. 1984. Minor polypeptides from the phycobilisome of the cyanobacterium Mastigocladus laminosus. Isolation, characterization and amino-acid sequences of a colourless 8.9 kDa polypeptide and of a 16.2 kDa phycobiliprotein. Hoppe-Seyler’s Z. Physiol. Chem. 365: 1085–1096.

    Article  Google Scholar 

  • Fujita, Y. and Hattori, A. 1960. Effect of chromatic lights on phycobilin formation in a bluegreen alga, Tolypothrix tenuis.Plant Cell Physiol. 1: 293–303.

    CAS  Google Scholar 

  • Fujita, Y. and Murakami, A. 1987. Regulation of electron transport composition in cyanobacterial photosynthetic system: Stoichiometry among photosystem I and II complexes and their light-harvesting antenna and cytochrome b 6/f complex. Plant Cell Physiol. 28: 1547–1553.

    CAS  Google Scholar 

  • Fujita, Y., Ohki, K. and Murakami, A. 1985. Chromatic regulation of photosystem composition in the photosynthetic system of red and blue-green algae. Plant Cell Physiol. 26: 1541–1548.

    CAS  Google Scholar 

  • Fujita, Y., Murakami, A., Aizawa, K. and Ohki, K. 1994 Short-term and long-term adaptation of the photosynthetic apparatus: Homeostatic properties of thylakoids. In: Bryant D. A. (ed.) the Molecular Biology of Cyanobacteria, pp 677–692. Kluwer Academic, The Netherlands.

    Chapter  Google Scholar 

  • Gaidukov, N. 1903. Die farbveränderung bei den Prozessen der Komplementären Chromatischen Adaptation. Ber. Deut. Bot. Ges. 21: 517–522.

    CAS  Google Scholar 

  • Gantt, E. and Conti, S.F. 1966. Granules associated with the chloroplast lamellae of Porphyridium cruentum.J. Cell. Biol. 29: 423–434.

    Article  PubMed  CAS  Google Scholar 

  • Gantt, E., Edwards, M.R. and Conti, S.F. 1968. Ultrastructure of Porphyridium aerugineum, a blue-green colored Rhodophytan. J. Phycol. 4: 65–71.

    Article  Google Scholar 

  • Gantt, E. and Lipschultz, C.A. 1972. Phycobilisomes of Porphyridium cruentum; isolation. J. Cell. Biol. 54: 313–324.

    Article  PubMed  CAS  Google Scholar 

  • Gantt, E. 1980. Structure and function of phycobilisomes: Light-harvesting pigment complexes in red and blue-green algae. Int. Rev. Cytol. 66: 45–80.

    Article  CAS  Google Scholar 

  • Gillbro, T., Sharkov, A.V., Kryukov, I.V., Khoroshilov, E.V., Kryukov, P.G., Fischer, R. and Scheer H. 1993. Förster energy transfer between neighboring chromophores in C-phycocyanin trimers. Biochim. Biophys. Acta 1140: 321–326.

    Article  CAS  Google Scholar 

  • Glazer, A.N. and Bryant, D.A. 1975. Allophycocyanin B (l max 671, 618 nm). A new cyanobacterial phycobiliprotein. Arch. Microbiol. 104: 15–22.

    Article  PubMed  CAS  Google Scholar 

  • Glazer, A.N., Yeh, S.W., Webb, S.P. and Clark, J.H. 1985. Disk to disk transfer as the ratelimiting step for energy flow in phycobiliproteins. Science 227: 419–423.

    Article  PubMed  CAS  Google Scholar 

  • Glazer, A.N. 1985. Light harvesting by phycobilisomes. Ann. Rev. Biophys. Chem. 14: 47–77.

    Article  CAS  Google Scholar 

  • Grossman, A.R., Schaefer, M.R., Chiang, G.G. and Collier, J.L. 1993. The phycobilisome, a light-harvesting complex responsive to environmental conditions. Microbiol. Rev. 57: 725–749.

    PubMed  CAS  Google Scholar 

  • Hattori, A. and Fujita, Y. 1959. Formation of phycobilin pigments in a blue-green alga, Tolypothrix tenuis, as induced by colored lights. J. Biochem 46: 561–524.

    Google Scholar 

  • Hoch. J.A. and Silhavy, T.J. dy1995. Two-Component Signal Transduction. ASM press.

    Google Scholar 

  • Holzwarth, A.R. 1991. Structure function relationship and energy transfer in phycobiliprotein antennae. Physiol. Plant. 83: 518–528.

    Article  CAS  Google Scholar 

  • Hucke, M., Schweitzer, G., Holzwarth, A.R., Sidler, W. and Zuber, H. 1993. Studies on chromophore coupling in isolated phycobiliproteins. IV Femtosecond transient absorption study of ultrafast excited state dynamics in trimeric phycoerythrocyanin complexes. Photochem. Photobiol. 57: 76–80.

    Article  CAS  Google Scholar 

  • Isono, T. and Katoh, T. 1987. Subparticles of Anabaena phycobilisomes. Arch. Biochem. Biophys. 256: 317–324.

    Article  PubMed  CAS  Google Scholar 

  • Khanna, R., Graham, J.-R., Myers, J. and Gantt, E. 1983. Phycobilisome composition and possible relationship to reaction centers. Arch. Biochem. Biophys. 224: 534–542.

    Article  PubMed  CAS  Google Scholar 

  • Kawamura, M., Mimuro, M. and Fujita, Y. 1979. Quantitative relationship between two reaction centers in the photosynthetic system of blue-green algae. Plant Cell Physiol. 20: 697–705.

    CAS  Google Scholar 

  • Kehoe, D.M. and Grossman, A.R. 1996. Similarity of a chromatic adaptation sensors to phytochrome and ethylene receptors. Science 273: 1409–1412.

    Article  PubMed  CAS  Google Scholar 

  • Kehoe, D.M., and Grossman, A.K. 1997. New classes of mutants in complementary chromatic adaptation provides evidence for a novel four-step phosphorelay system. J. Bacteriol., 179: 3914–3921.

    PubMed  CAS  Google Scholar 

  • Kikuchi, H., Sugimoto, T. and Mimuro, M. 1997. An electronic state of the chromophore, phycocyanobilin, and its interaction with the protein moiety in C-phycocyanin: protonation of the chromophore. Chem. Phys. Lett. 274: 460–465.

    Article  CAS  Google Scholar 

  • Kühlbrandt, W., Wang, D.N. and Fujiyoshi, Y. 1994. Atomic model of plant light-harvesting complex by electron crystallography. Nature 367: 614–621.

    Article  PubMed  Google Scholar 

  • Ley, A.C. and Butler, W.L. 1977. The distribution of excitation energy between photosystem I and photosystem II in Porphyridium cruentum. In Miyachi, S. et al. (eds.) Special Issue of Plant Cell Physiol. No. 3: 33–46.

    Google Scholar 

  • MacColl, R. and Guard-Friar, D. 1987. Cryptomonads In: MacColl, R. and D. Guard-Friar (eds.) Phycobiliproteins, pp 175–192. CRC Press, Boca Raton.

    Google Scholar 

  • Mann, N.H. 1994. Protein phosphorylation in cyanobacteria. Microbiol. 140: 3207–3215.

    Article  CAS  Google Scholar 

  • McDermott, G., Prince, S.M., Freer, A.A., Hawthornthwaite-Lawless, A.M., Papiz, M.Z., Cogdell, R.J. and Isaacs, N.W. 1995. Crystal structure of an integral membrane lightharvesting complex from photosynthetic bacteria, Nature 374: 517–521.

    Article  CAS  Google Scholar 

  • Melis, A. 1991. Dynamics of photosynthetic membrane composition and function. Biochim. Biophys. Acta 1058: 87–106.

    Article  CAS  Google Scholar 

  • Mimuro, M., Yamazaki, I., Yamazaki, T. and Fujita, Y. 1985. Excitation energy transfer in the chromatically adapted phycobilin systems of blue-green algae: Difference in the energy transfer kinetics at phycocyanin level. Photochem. Photobiol. 41: 597–603.

    Article  CAS  Google Scholar 

  • Mimuro, M., Füglistaller, P., Riimbeli, R. and Zuber, H. 1986. Functional assignment of chromophores and energy transfer in C-phycocyanin isolated from the thermophilic cyanobacterium Mastigocladus laminosus.Biochim. Biophys. Acta 848: 155–166.

    Article  CAS  Google Scholar 

  • Mimuro, M. and Gantt, E. 1986. A high molecular weight terminal pigment (“Anchor polypeptide”) and a minor blue polypeptide from phycobilisomes of cyanobacterium Nostoc sp (MAC): Isolation and characterization. Photosynth. Res. 10: 201–208.

    Article  CAS  Google Scholar 

  • Mimuro, M., Nishimura, Y., Takaichi, S., Yamano, Y., Ito, M., Nagaoka, S., Yamazaki, I., Katoh, T. and Nagashima, U. 1993. The effect of molecular structure on the relaxation processes in carotenoids containing carbonyl group. Chem. Phys. Lett. 213: 576–580.

    Article  CAS  Google Scholar 

  • Murakami, A. 1997. Quantitative analysis of 77K fluorescence emission spectra in Synechocystis sp. PCC 6714 and Chlamydomonas reinhardtii with variable PS I/PS II stoichiometries. Photosynthe. Res. 53: 141–148.

    Article  CAS  Google Scholar 

  • Murata, N. 1969. Control of excitation transfer in photosynthesis. I. Light-induced changes of chlorophyll a florescence in Porphyridium cruentum.Biochim. Biophys. Acta 172: 242–251.

    Article  PubMed  CAS  Google Scholar 

  • Nechushtai, R., Cohen, Y. and Chitnis, P.R. 1995. Assembly of the chlorophyll-protein complexes. Photosynth. Res. 44: 165–181.

    Article  CAS  Google Scholar 

  • Ohki, K., Okabe, Y., Murakami, A. and Fujita, Y 1987. A comparative study of quantitative relationships between phycobiliproteins and photosystem II in cyanobacteria and red algae. Plant Cell Physiol. 28: 1219–1226.

    CAS  Google Scholar 

  • Ohki, K. and Fujita, Y. 1992. Photoregulation of phycobilisome structure during complementary chromatic adaptation in the marine cyanophyte Phormidium sp, C86. J. Phycol. 28: 803–808.

    Article  CAS  Google Scholar 

  • Parkinson, J.S. and Kofoid, E.C. 1992. Communication modules in bacterial signaling proteins. Ann. Rev. Genet. 26: 71–112.

    Article  PubMed  CAS  Google Scholar 

  • Pastore, A. and Lesk, A.M. 1990. Comparison of the structures of globins and phycocyanins: Evidence for evolutionary relationship. Proteins Struc. Funct. Genet. 8: 133–155.

    Article  CAS  Google Scholar 

  • Redlinger, T. and Gantt, E. 1982. A. M. 95,000 polypeptide in Porphyridium cruentum phycobilisomes and thylakoids: Possible function in linkage of phycobilisomes to thylakoids and in energy transfer. Proc. Natl. Acad. Sci. USA 79: 5542–5546.

    Article  PubMed  CAS  Google Scholar 

  • Rhie, G. and Beale, S.I. 1994. Regulation of heme oxygenase activity in Cyanidium caldarium by light, glucose, and phycobilin precursors. J. Biol. Chem. 269: 9620–9626.

    PubMed  CAS  Google Scholar 

  • Rümbeli, R., Wirth, M., Suter, F. and Zuber, H. 1987. The phycobiliprotein β162 of the allophycocyanin core from the cyanobacterium Mastigocladus laminosus. Characterization and complete amino acid sequence. Biol. Chem. Hoppe-Seyler 368: 1–9.

    Article  PubMed  Google Scholar 

  • Sauer, K., and Scheer, H. 1988. Excitation transfer in C-phycocyanin Förster transfer rate and exciton calculation based on new crystal structure form Agmenellum quadruplicatum and Mastigocladus laminosus.Biochem. Biophsy. Acta 936: 157–170.

    Article  CAS  Google Scholar 

  • Scheer, H. 1981. Biliprotein. Angew. Chem. 93: 230–250.

    Article  CAS  Google Scholar 

  • Schirmer, T., Bode, W., Huber, R., Sidler, W. and Zuber, H. 1985. X-ray crystallographic structure of the light-harvesting biliprotein C-phycocyanin from the thermophilic cyanobacterium Mastigocladus laminosus and its resemblance to globin structures. J. Mol. Biol. 184: 257–277.

    Article  PubMed  CAS  Google Scholar 

  • Schirmer, T., Huber, R., Schneider, M., Bode, W., Miller, M. and Hackert, M.L. 1986. Crystal structure analysis and refinement at 2.5 Å of hexameric C-phycocyanin from the cyanobacterium Agmenellum quadruplicatum. The molecular model and its implications for light-harvesting. J. Mol. Biol. 188: 651–676.

    Article  PubMed  CAS  Google Scholar 

  • Schirmer, T., Bode, W. and Huber, R. 1987. Refined three-dimensional structures of two cyanobacterial C-phycocyanins at 2.1 and 2.5 Å resolution. A common principle of phycobilin-protein interaction. J. Mol. Biol. 196: 677–695.

    Article  PubMed  CAS  Google Scholar 

  • Sharkov, A.V., Kryukov, I.V., Khoroshilov, E.V., Kryukov, P.G., Fisher, R., Scheer, H. and Gillbro, T. 1992. Femtosecond energy transfer between chromophores in allophycocyanin trimers. Chem. Phys. Lett. 191: 633–638.

    Article  CAS  Google Scholar 

  • Sidler, W.A., Gysi, J., Isker, E. and Zuber, H. 1981. The complete amino acid sequence of both subunits of allophycocyanin: a light harvesting protein-pigment complex from the cyanobacterium Mastigocladus laminosus.Hoppe-Seyler’ s Z. Physiol. Chem. 362: 611–628.

    Article  CAS  Google Scholar 

  • Sidler, W.A. Kumpf, B., Suter, F., Klotz, A.V., Glazer, A.N. and Zuber, H. 1989. The complete amino-acid sequence of the α and β subunits of B-phycoerythrin from the rhodophytan algae Porphyridium cruentum.Biol. Chem. Hoppe-Seyler 370: 115–124.

    Article  PubMed  CAS  Google Scholar 

  • Sidler, W.A. 1994. Phycobilisomes and phycobiliprotein structures. In: Bryant, D.A. (ed.). The Molecular Biology of Cyanobacteria, pp 139–216. Kluwer Academic, The Netherlands.

    Chapter  Google Scholar 

  • Tandeau de Marsac, N. and Choen-Bazire, G. 1977. Molecular composition of cyanobacterial phycobilisomes. Proc. Natl. Acad. Sci. USA 74: 1635–1639.

    Article  Google Scholar 

  • van Grondelle, R., Dekker, J., Gillbro, T. and Sundstrom, V. 1994. Energy transfer and trapping in photosynthesis. Biochim. Biophys. Acta 1187: 1–65.

    Article  CAS  Google Scholar 

  • Westermann, M. and Wehrmeyer, W. 1995. A new type of complementary chromatic adaptation exemplified by Phormidium sp. C86: changes in the number of peripheral rods and in the stoichiometry of core complexes in phycobilisomes. Arch. Microhiol. 164: 132–141.

    Article  CAS  Google Scholar 

  • Wolfe, G.R., Cunningham, F.X., Durnford, D., Green, B.R. and Gantt, E. 1994. Evidence for a common origin of chloroplasts with light-harvesting complexes of different pigmentation. Nature 367: 566–568.

    Article  CAS  Google Scholar 

  • Yamazaki, I., Mimuro, M., Murao, T., Yamazaki, T., Yoshihara, K. and Fujita, Y. 1984. Excitation energy transfer in the light harvesting antenna system of the red algae Porphyridium cruentum and the blue-green algae Anacystis nidulans: Analysis of time-resolved fluorescence spectra. Photochem. Photobiol. 39: 233–240.

    Article  CAS  Google Scholar 

  • Zhao, J., Zhou, J., and Bryant, D.A. 1992. Energy transfer processes in phycobilisomes as deduced from analyses of mutants of Syechococcus PCC 7002. In: Murata, N. (ed.) Research in Photosynthesis, Vol. I, pp 25–32, Kluwer Academic, The Netherlands.

    Google Scholar 

  • Zuber, H. 1985. Structure and function of light-harvesting complexes and their polypeptides. Photochem. Photobiol. 42: 821–844.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mimuro, M., Kikuchi, H., Murakami, A. (1999). Structure and Function of Phycobilisomes. In: Singhal, G.S., Renger, G., Sopory, S.K., Irrgang, KD., Govindjee (eds) Concepts in Photobiology. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4832-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4832-0_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6026-4

  • Online ISBN: 978-94-011-4832-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics