Skip to main content

The Photoperiodic Control of Plant Reproduction

  • Chapter
Concepts in Photobiology

Summary

Photoperiodism is important in controlling many aspects of plant development and in coordinating certain responses, such as flowering, with different times of the year. There are three main photoperiodic response types, short-day, long-day and day-neutral. The responses of SDP and LDP have many features in common such as the importance of the dark period (the critical night length), the involvement of phytochrome and the interaction with a circadian oscillator. There are, however, other features that are peculiar to LDP such as the greater influence of the light period and the possible involvement of a blue-light receptor in the photoperiodic responses of long-day requiring Cruciferae.

In SDP and LDP the mechanism of perception of the photoperiodic stimulus and the production of the transmissible signal(s) in the leaf is the same as has been demonstrated by grafting experiments. There is evidence for both an inducing signal and an inhibitory signal, the natures of which are not yet known. These signals appear to be fairly universal in plants and affect a wide variety of processes. Evidence is accumulating for the involvement of gibberellins in photoperiodic responses and that phytochrome B may be involved in regulating the level of, or sensitivity to, certain types of gibberellins.

Finally, the isolation of genes from flowering-time mutants is going to significantly advance our knowledge about the mechanism of the response to photoperiod, and is going to enable the manipulation of plant photoperiodic responses for agricultural and economic benefit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abou-Haidar, S.S., Miginiac, E. and Sachs, R.M. 1985. [14C]-assimilate partitioning in photoperiodically induced seedlings of Pharbitis nil. The effect of benzyladenine. Physiol. Plant. 64: 265–270.

    Article  CAS  Google Scholar 

  • Batutis, E.J. and Ewing, E.E. 1982. Far-red reversal of red light effect during long night induction of potato (Solanum tuberosum L.) tuberization. Plant Physiol. 69: 672–674.

    Article  PubMed  CAS  Google Scholar 

  • Benson, E.G. and Murray, D.E. 1949. Light effects. Caribbean Commission Monthly Information Bulletin. December issue.

    Google Scholar 

  • Britz, S.J., Hungerford, W.E. and Lee, D.R. 1985. Photoperiodic regulation of photosynthetic partitioning in leaves of Digitaria decumbens Stent. Plant Physiol. 78: 710–714.

    Article  PubMed  CAS  Google Scholar 

  • Chailakyan, M. Kh., Yanina, L.I., Devedzhyan, A.G. and Lotova, G.N. 1981. Photoperiodism and tuber formation in grafting of tobacco onto potato. Dokl. Acad. Nauk SSSR 257: 1276–1280.

    Google Scholar 

  • Cumming, B.G., Hendricks, S.B. and Borthwick, H.A. 1965. Rhythmic flowering responses and phytochrome changes in a selection of Chenopodium rubrum. Can. J. Bot. 43: 825–853.

    Article  Google Scholar 

  • Davies, P.J., Birnbergg, P.R., Maki, S.L. and Brenner, M.L. 1986. Photoperiod modification of (14C)gibberellin A12 aldehyde metabolism in shoots of pea, line G2. Plant Physiol. 81: 991–996.

    Article  PubMed  CAS  Google Scholar 

  • Deitzer, G.F., Hayes, R.G. and Jabben, M. 1982. Phase-shift in circadian rhythm of floral promotion by far-red energy in Hordeum vulgare L. Plant Physiol. 69: 597–601.

    Article  PubMed  CAS  Google Scholar 

  • Devlin, P.F., Rood, S.B., Somers, D.E., Quail, P.H. and Whitelam, G.C. 1992. Photophysiology of the elongated internode (ein) mutant of Brassica rapa. Plant Physiol. 100: 1442–1447.

    Article  PubMed  CAS  Google Scholar 

  • Downs, R.J. 1956. Photoreversibility of flower initiation. Plant Physiol. 31: 279–284.

    Article  PubMed  CAS  Google Scholar 

  • Evans, L.T., King, R.W., Mander, L.N. and Pharis, R.P. 1994. The relative significance for stem elongation and flowering in Lolium temulentum of 3β-hydroxylation of gibberellins. Planta 192: 130–136.

    CAS  Google Scholar 

  • Fondeville, J.C., Borthwick, H.A. and Hendricks, S.B. 1966. Leaflet movement of Mimosa pudica L. Identification of phytochrome action. Planta 69: 357–364.

    Article  Google Scholar 

  • Foster, K.R., Miller, F.R., Childs, K.L. and Morgan, P.W. 1994. Genetic regulation of development in Sorghum bicolor IX. the ma 3 R allele disrupts diurnal control of gibberellin biosynthesis. Plant Physiol. 105: 941–948.

    CAS  Google Scholar 

  • Friend, D.J.C. 1985. Brassica. In Handbook of Flowering vol. II, ed. Halevy, CRC press. Boca Raton.

    Google Scholar 

  • Friend, D.J.C., Bodson, M. and Bernier, G. 1984. Promotion of flowering in Brassica campestris L. cv Ceres by sucrose. Plant Physiol. 75: 1085–1089.

    Article  PubMed  CAS  Google Scholar 

  • Garner, W.W. and Allard, H.A. (1920). Effect of the relative length of day and night and other factors of the environment on growth and reproduction in plants. J. Agric. Res. 18: 553–606.

    Google Scholar 

  • Gilmour, S.J., Zeevart, J.A.D., Schwenen, L. and Greabe, J.E. 1986. Gibberellin metabolism in cell-free extracts from spinach leaves in relation to photoperiod. Plant Physiol. 82: 190–195.

    Article  PubMed  CAS  Google Scholar 

  • Goto, N., Kumagai, T. and Koornneef, M. 1991. Flowering responses to light-breaks in photomorphogenesis mutants of Arabidopsis thaliana, a long-day plant. Physiol. Plant. 83: 209–215.

    Article  Google Scholar 

  • Gregory, L.E. 1965. Physiology of tuberization in plants. [Tubers and tuberous roots]. Handbuch Pflanzenphysiol. 1328-1354.

    Google Scholar 

  • Guttridge, C.G. 1959. Further evidence for a growth-promoting and flower-inhibiting hormone in strawberry. Ann. Bot. N.S. 23: 612–621.

    Google Scholar 

  • Hanke, J., Hartmann, K.M. and Mohr, H. 1969. Die Wirkung von’ storlicht’ auf die Blüten-bildung von Sinapis alba L. Planta 86: 235–249.

    Article  Google Scholar 

  • Jackson, S.D., Heyer, A., Dietze, J. and Prat, S. 1996. Phytochrome B mediates the photoperiodic control of tuber formation in potato. Plant J. 9: 159–166.

    Article  CAS  Google Scholar 

  • Johnson, E., Bradley, M., Harberd, N.P. and Whitelam, G.C. (1994). Photoresponses of light-grown phyA mutants of Arabidopsis. Plant Physiol. 105: 141–149.

    Article  PubMed  CAS  Google Scholar 

  • King, R.W., Evans, L.T. and Wardlaw, I.F. 1968. Translocation of the floral stimulus in Pharbitis nil in relation to that of other assimilates. Z. Pflanzenphysiol. 59: 377–385.

    Google Scholar 

  • King, W.M. and Murfet, I.C. 1985. Flowering in Pisum. A sixth locus, Dne. Ann. Bot. 56: 835–846.

    Google Scholar 

  • Lang, A. 1965. Physiology of flower initiation. In Encyclopedia of Plant Physiology, vol. XV/1, ed. Ruhland, Springer-Verlag, Berlin.

    Google Scholar 

  • Lang, A. and Melchers, G. 1943. Die photoperiodische Reaktion von Hyoscyamus niger. Planta 33: 653–702.

    Article  CAS  Google Scholar 

  • Lee, H.S.J., Vince-Prue, D. and Kendrick R.E. 1987. Phase shifting effects in the photoperiodic rhythm of flowering in dark-grown seedlings of Pharbitis nil Choisy. Plant Cell Physiol. 28: 93–100.

    Google Scholar 

  • Lee, I., Aukerman, M.J., Gore, S.L., Lohman, K.N., Michaels, S.D., Weaver, L.M., John, M.C., Feldmann, K.A. and Amasino, R.M. 1994. Isolation of LUMINIDEPENS—a gene involved in the control of flowering time in Arabidopsis. Plant Cell 6: 75–83.

    PubMed  CAS  Google Scholar 

  • Lincoln, C., Long, J., Yamaguchi, J., Serikawa, K. and Hake, S. 1994. A knotted1-like homeobox gene in Arabidopsis is expressed in the vegetative meristem and dramatically alters leaf morphology when overexpressed in transgenic plants. Plant Cell 6: 1859–1876.

    PubMed  CAS  Google Scholar 

  • Lopez-Juez, E., Kobayashi, M., Sakurai, A., Kamiya, Y. and Kendrick, R.E. 1995. Phytochrome, gibberellins, and hypocotyl growth. Plant Physiol. 107: 131–140.

    PubMed  CAS  Google Scholar 

  • Lumsden, P.J. 1991. Orcadian rythms and phytochrome. Ann. Rev. Plant Physiol. Plant Mol. Biol. 42: 351–371.

    Article  CAS  Google Scholar 

  • Lumsden, P.J. and Furuya, M. 1986. Evidence for two actions of light in the photoperiodic induction of flowering in Pharbitis nil. Plant Cell Physiol. 27: 1541–1551.

    Google Scholar 

  • Menzel, G., Apel, K. and Melzer, S. 1996. Identification of two MADS box genes that are expressed in the apical meristem of the long-day plant Sinapis alba in transition to flowering. Plant J. 9: 399–408.

    Article  PubMed  CAS  Google Scholar 

  • Mozley, D. and Thomas, B. 1995. Developmental and photobiological factors affecting photoperiodic induction in Arabidopsis thaliana Heynh. Landsberg erecta. J. Exp. Bot. 46: 173–179.

    Article  CAS  Google Scholar 

  • Murfet, I.C. 1971. Flowering in Pisum: reciprocal grafts between known genotypes. Aust. J. Biol. Sci. 24: 1089–1101.

    Google Scholar 

  • Nitsch, J.P. (1966). Photoperiodisme et tuberisation. Bul. Soc. Franc. Physiol. Véget. 12: 233–246.

    Google Scholar 

  • Ogawa, Y. and King, R.W. 1979. Establishment of photoperiodic sensitivity by benzyladenine and a brief red irradiation on dark grown seedlings of Pharbitis nil Chois. Plant Cell Physiol. 20: 119–122.

    Google Scholar 

  • Papenfuss, H.D. and Salisbury, F.B. 1967. Properties of clock re-setting in flowering of Xanthium. Plant Physiol. 42: 1562–1568.

    Article  PubMed  CAS  Google Scholar 

  • Purvis, O.N. 1961. The physiological analysis of vernalisation. In Encyclopedia of Plant Physiology 16, Ruthland, W (ed.) Springer-Verlag, Berlin.

    Google Scholar 

  • Putterill, J., Robson, F., Lee, K., Simon, R. and Coupland, G. 1995. The CONSTANS gene of arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80: 847–857.

    Article  PubMed  CAS  Google Scholar 

  • Reid, J.B. and Murfet, I.C. 1984. Flowering in Pisum a fifth locus, Veg. Ann. Bot. 53: 369–382.

    Google Scholar 

  • Salisbury, F.B. 1965. Time measurement and the light period in flowering. Planta 66: 1–26.

    Article  CAS  Google Scholar 

  • Salisbury, F.B. and Ross, C. 1969. Plant Physiology, Wadsworth Publishing Co. Inc., Belmont, CA, USA.

    Google Scholar 

  • Salisbury, F.B. 1990. Xanthium strumarium. In Handbook of Flowering vol. IV, (ed. Halevy), CRC Press, Boca Raton.

    Google Scholar 

  • Sarkar, S. 1958. Versuche zur Physiologie der Vernalization. Biol. Zbl. 77: 1–49.

    Google Scholar 

  • Satter, R.L., Guggino, S.E., Lonergan, T.A. and Galston, A.W. 1981. The effect of blue and far-red light on rhythmic leaf movements in Samanea and Albizia. Plant Physiol. 67: 965–968.

    Article  PubMed  CAS  Google Scholar 

  • Sponsel, V.M. 1995. Gibberellin biosynthesis and metabolism. In Plant Hormones: Physiology, Biochemistry and Molecular Biology, Davies, R. (ed.) Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Sung, Z.R., Belachew, A., Shunong, B. and Bertrand-Garcia, R. 1992. EMF, an Arabidopsis gene required for vegetative shoot development. Science 258: 1645–1647.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, H., Saito, T. and Suge, H. 1982. Intergeneric translocation of floral stimulus across a graft in monoecious Cucurbitaceae with special reference to the sex expression of flowers. Plant and Cell Physiol. 23: 1–9.

    Google Scholar 

  • Takimoto, A. and Hamner, K.C. 1964. Effect of temperature and pre-conditioning on photoperiodic response of Pharbitis nil. Plant Physiol. 39: 1024–1030.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, S.A. and Murfet, I.C. 1994. A short-day mutant in pea is deficient in the floral stimulus. Flowering Newsletter 18: 39–43.

    Google Scholar 

  • Thomas, R.G. 1979. Inflorescence initiation in Trifolium repens L.: influence of natural photoperiods and temperatures. New Zealand J. Bot. 17: 287–299.

    Article  Google Scholar 

  • Thomas, B. and Mozley, D. 1994. Isolation and properties of mutants of Arabidopsis thaliana with reduced sensitity to short days. In Molecular and Cellular Aspects of Plant Reproduction, eds. Scott and Stead, SEB seminar series. Cambridge University Press, Cambridge.

    Google Scholar 

  • Thomas, B. and Vince-Prue, D. 1984. Juvenility, photoperiodism and vernalisation. In Advanced Plant Physiology, Wilkins, M.B. (ed.) Pitman Publishing Ltd., London.

    Google Scholar 

  • van den Berg, J.H., Davies, P.J., Ewing, E.E. and Halinska, A. 1995a. Metabolism of gibberellin A12 and A12-aldehyde and the identification of endogenous gibberellins in potato (Solanum tuberosum ssp. Andigena) shoots. J. Plant Physiol. 146: 459–466.

    Article  Google Scholar 

  • van den Berg, J.H., Simko, I., Davies, P.J., Ewing, E.E. and Halinska, A. 1995b. Morphology and (14C)gibberellin A12 metabolism in wild-type and dwarf Solanum tuberosum ssp. andigena grown under long and short photoperiods. J. Plant Physiol. 146: 467–473.

    Article  Google Scholar 

  • Vince-Prue, D. 1975. Photoperiodism in Plants, McGraw-Hill & Co., London.

    Google Scholar 

  • Vince-Prue, D. 1994. The duration of light and photoperiodic responses. In Photomorphogenesis in plants, 2nd edition, Kendrick, R.E. and Kronenberg, G.H.M. (eds.) Kluwer Academic Publishers, The Netherlands.

    Google Scholar 

  • Vlitos, A.J. and Meudt, W. 1955. Interactions between vernalisation and photoperiod in spinach. Contrib. Boyce Thompson Inst. Plant Res. 18: 159–166.

    Google Scholar 

  • Welensick, S.J. 1958. Vernalisation and age in Lunaria biennis. Proc. K. ned. Akad. Wet. C61: 552–560.

    Google Scholar 

  • Weiler, J.L., Ross, J.J. and Reid, J.B. 1994. Gibberellins and phytochrome regulation of stem elongation in pea. Planta 192: 489–496.

    Google Scholar 

  • Wilson, R.N., Heckman, J.W. and Somerville, C.R. 1992. Gibberellin is required for flowering in Arabidopsis thaliana under short days. Plant Physiol. 100: 403–408.

    Article  PubMed  CAS  Google Scholar 

  • Zagotta, M.T., Hicks, K.A., Jacobs, C.I., Young, J.C., Hangarter, R.P. and Ry Meeks-Wagner, D. 1996. The Arabidopsis ELF3 gene regulates vegetative photomorphogenesis and the photoperiodic induction of flowering. Plant J. 10: 691–702.

    Article  PubMed  CAS  Google Scholar 

  • Zeevart, J.A.D. 1958. Flower formation as studied by grafting Meded. LandbHoogesch. Wageningen 58: 1–88.

    Google Scholar 

  • Zeevart, J.A.D. 1969. Perilla. In the induction of flowering, ed. Evans, MacMillan, Melbourne.

    Google Scholar 

  • Zeevart, J.A.D. (1982). Transmission of the floral stimulus from a long-short-day plant, Bryophyllum daigremontianum, to the short-long-day plant Echeveria harmsii. Ann. Bot. 49: 549–552.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jackson, S.D., Thomas, B. (1999). The Photoperiodic Control of Plant Reproduction. In: Singhal, G.S., Renger, G., Sopory, S.K., Irrgang, KD., Govindjee (eds) Concepts in Photobiology. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4832-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4832-0_29

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6026-4

  • Online ISBN: 978-94-011-4832-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics