Skip to main content

How Higher Plants Respond to Excess Light: Energy dissipation in photosystem II

  • Chapter
Concepts in Photobiology

Summary

In this chapter we present current views concerning the adaptation and acclimation of the higher plant photosynthetic apparatus to excess light levels. The primary focus is at the level of the chloroplast thylakoid membrane which is where the primary events of photosynthetic energy transduction occur. We first summarize our current understanding the molecular composition and macromolecular organization of Photosystem II (PS II) because these factors pertain directly to photosynthetic function during environmental stress. We then discuss the biochemical and biophysical interpretations obtained from the most commonly used tool for probing the photosynthetic function of PS II, namely PS II chlorophyll (Chl) a fluorescence. We explain how PS II Chl a fluorescence yield measurements have provided insights into the dynamic relationships between the primary photosynthetic light-energy transduction processes and the important light adaptation and acclimation strategies utilized by PS II. The basic biochemical and biophysical aspects of the light-energy dissipation, avoidance and damage-repair mechanisms that influence PS II function are discussed in relation to a physiological gradient of increasing environmental stress. The future areas of research interest and importance regarding the optimization and preservation of PS II function during environmental stress are also briefly highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alcala, J.R., Gratton, E. and Prendergast, F.G. 1987. Fluorescence lifetime distributions in proteins. Biophys. J. 51: 597–604.

    Article  PubMed  CAS  Google Scholar 

  • Allen, J.F. 1992. How does protein phosphorylation regulate photosynthesis? TIBS 17: 12–17.

    PubMed  CAS  Google Scholar 

  • Anderson, J.M. 1986. Photoregulation of the composition, function, and structure of thylakoid membranes. Ann. Rev. Plant. Physiol. 37: 93–136.

    Article  CAS  Google Scholar 

  • Andersson, B. and Barber, J. 1996. Mechanisms of photodamage and protein degradation during photoinhibition of Photosystem II. In: Photosynthesis and the Environment N.R. Baker (ed.), pp. 101–121, Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Avron, M. and Schreiber, U. 1977. Proton gradients as possible intermediary energy transducers during ATP-driven reverse electron flow. FEBS Lett. 77: 1–6.

    Article  PubMed  CAS  Google Scholar 

  • Baker, N. (ed) 1996. Photosynthesis and the Environment. Advances in Photosynthesis Research, Vol. 5, Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Bassi, R., Pineau, B., Dainese, P. and Marquardt, J. 1993. Carotenoid-binding proteins of Photosystem II. Eur. J. Biochem. 212: 297–303.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, J. 1991. Protein phosphorylation in green plant chloroplast. Annu. Rev. Plant Physiol. Plant. Mol. Biol. 42: 281–311.

    Article  CAS  Google Scholar 

  • Berry, J.A. and Björkman, O. 1980. Photosynthetic response and adaptation to temperature in higher plants. Ann. Rev. Plant Physiol. 31: 491–543.

    Article  Google Scholar 

  • Björkman, O. and Demmig-Adams, B. 1994. Regulation of photosynthetic light energy capture, conversion and dissipation in leaves of higher plants. In: Ecological Studies Schulze, E.-D., Caldwell, M. (eds.) pp. 17-47, Vol. 100, Springer-Verlag.

    Google Scholar 

  • Briantais, J.-M., Dacosta, J., Goulas, Y., Ducruet, J.-M. and Moya, I. 1996. Heat-stress induces in leaves an increase of the minimum level of chlorophyll fluorescence, Fo: a time-resolved analysis. Photosynth. Res. 48: 189–196.

    Article  CAS  Google Scholar 

  • Bricker, T.M. and Ghanotakis, D.F. 1996. Introduction to oxygen evolution and the oxygen evolving complex. In: Oxygenic Photosynthesis: The Light Reactions (Ort, D.R. and Yocum, C.F. eds.), pp. 113–136, Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Bugos, R.C. and Yamamoto, H.Y. 1996. Molecular cloning of violaxanthin de-epoxidase from romaine lettuce and expression in Escherichia coli. Proc. Natl. Acad. Sci. USA 93: 6320–6325.

    Article  PubMed  CAS  Google Scholar 

  • Chow, W.S. 1994. Photoprotection and photoinhibitory damage. In: Advances in Molecular and Cell Biology, Molecular Processes of Photosynthesis, E.E. Bittar, series ed; J. Barber, guest (ed.), pp. 151–196, Vol. 10, JAI Press Inc, Greenwich, CT USA

    Chapter  Google Scholar 

  • Chow, W.S., Hope, A.B. and Anderson, J.M. 1989. Oxygen per flash from leaf discs quantifies Photosystem II. Biochim. Biophys. Acta 973: 105–108.

    Article  CAS  Google Scholar 

  • Crofts, A.R. and Yerkes, C.T. 1994. A molecular mechanism for qE-quenching. FEBS Lett. 352: 265–270.

    Article  PubMed  CAS  Google Scholar 

  • Dau, H. 1994. Molecular mechanisms and quantitative models of variable PS II fluorescence. Photochem. Photobiol. 60: 1–23.

    Article  CAS  Google Scholar 

  • Debus, R.J. 1992. The manganese and calcium ions of photosynthetic oxygen evolution. Biochim. Biophys. Acta 1102: 269–352.

    Article  PubMed  CAS  Google Scholar 

  • Demmig-Adams, B. and Adams, W.W. III 1996. The role of xanthophyll cycle carotenoids in the protection of photosynthesis. TIPS 1: 21–26.

    Google Scholar 

  • Demmig-Adams, B., Gilmore, A.M. and Adams, W.W. HI 1996. In vivo functions of carotenoids in plants. FASEB 10: 403–412.

    CAS  Google Scholar 

  • Diner, B.A. and Babcock, G.T. 1996. Structure, dynamics and energy conversion efficiency in Photosystem II. In: Oxygenic Photosynthesis: The Light Reactions (Ort, D.R., Yocum, C.F. eds.), pp. 213–247, Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Duysens, L.N.M. and Sweers, H.E. 1963. Mechanism of two photochemical reactions in algae as studied by means of fluorescence. In: Studies on Microalgae and Photosynthetic Bacteria. (Japanese Society of Plant Physiologists, eds.), pp. 353–372. University of Tokyo Press, Tokyo.

    Google Scholar 

  • Falk, S., Krol, M., Maxwell, D.P., Rezansoff, D.A., Gray, G.R. and Huner, N.P.A. 1994. Changes in the in vivo fluorescence quenching in rye and barley as a function of reduced PS II light-harvesting antenna size. Physiol. Plant. 91: 551–558.

    Article  CAS  Google Scholar 

  • Frank, H.A., Cua, A., Chynwat, V., Young, A., Gosztola, D. and Wasielewski, M.R. 1994. Photophysics of the carotenoids associated with the xanthophyll cycle in photosynthesis. Photosynth. Res. 41: 389–395.

    Article  CAS  Google Scholar 

  • Frauenfelder, H.F., Parak, F. and Young, R.D. 1988. Conformational substates in proteins. Annu. Rev. Biophys. Chem. 17: 451–479.

    Article  CAS  Google Scholar 

  • Funk, C., Schröder, W., Napiwotzki, A., Tjus, S.E., Renger, G. and Andersson, B. 1995. The PS II-S protein of higher plants: A new type of pigment-binding protein. Biochemistry 34: 11133–11141.

    Article  PubMed  CAS  Google Scholar 

  • Gantt, E. 1996. Pigment protein complexes and the concept of the photosynthetic unit: chlorophyll complexes and phycobilisomes. Photosynth. Res. 48: 47–53.

    Article  CAS  Google Scholar 

  • Gilmore, A.M. 1997. Mechanistic aspects of xanthophyll cycle-dependent photoprotection in higher plant chloroplasts and leaves. Physiol. Plant. 99: 197–209.

    Article  CAS  Google Scholar 

  • Gilmore, A.M. and Björkman, O. 1995. Temperature sensitive coupling and uncoupling of ATPase mediated nonradiative energy dissipation; similarities between isolated chloroplast and intact leaves. Planta 197: 646–654.

    Article  CAS  Google Scholar 

  • Gilmore, A.M. and Yamamoto, H. Y. 1993. Linear models relating xanthophylls and lumen acidity to non-photochemical fluorescence quenching. Evidence that antheraxanthin explains zeaxanthin-independent quenching. Photosynth. Res. 35: 67–78.

    Article  CAS  Google Scholar 

  • Gilmore, A.M., Mohanty, N. and Yamamoto, H.Y. 1994. Epoxidation of zeaxanthin and antheraxanthin reverses nonphotochemical quenching of Photosystem II chlorophyll a fluorescence in the presence of a transthylakoid ΔpH. FEBS Lett. 350: 271–274.

    Article  PubMed  CAS  Google Scholar 

  • Gilmore, A.M., Hazlett, T.L. and Govindjee, 1995. Xanthophyll cycle dependent quenching of Photosystem II chlorophyll a fluorescence: formation of a quenching complex with a short fluorescence lifetime. Proc. Natl. Acad. Sci. USA 92: 2273–2277.

    Article  PubMed  CAS  Google Scholar 

  • Gilmore, A.M., Hazlett, T., Debrunner, P.G. and Govindjee 1996a. Photosystem II chlorophyll a fluorescence lifetimes are independent of the antenna size differences between barley wild-type and chlorina mutants: Comparison of xanthophyll-cycle dependent and photochemical quenching. Photosynth. Res. 48: 171–187.

    Article  CAS  Google Scholar 

  • Gilmore, A.M., Hazlett, T., Debrunner, P.G. and Govindjee (1996b). Comparative time-resolved Photosystem II chlorophyll a fluorescence analyses reveal distinctive differences between photoinhibitory reaction center damage and xanthophyll cycle-dependent energy dissipation. Photochem. Photobiol. 64: 552–563.

    Article  PubMed  CAS  Google Scholar 

  • Gilmore, A.M., Shinkarev, V.P., Govindjee 1997. The dimmer switch in Photosystem II: Model of xanthophyll cycle-dependent energy dissipation. Biophys. J. 72: A88 (abstract).

    Google Scholar 

  • Gilmore, A.M., Shinkarev, V.P., Hazlett T.H. and Govindjee. 1998. Quantitative analysis of intrathylakoid pH and xanthophyll cycle effects on Chl a fluorescence lifetimes and intensity. Xlth International Photosynthesis Congress, Budapest, Hungary, in press.

    Google Scholar 

  • Govindjee 1995. Sixty-three years since Kautsky: Chlorophyll a fluorescence. Aust. J. Plant Physiol. 11: 131–160.

    Article  Google Scholar 

  • Govindjee, Amesz, J. and Fork, D.C. (eds) 1986. Light Emission by Plants and bacteria. Academic Press, Orlando.

    Google Scholar 

  • Govindjee, Van de Ven, M., Cao, J., Royer, C. and Gratton, E. 1993. Multifrequency cross-correlation phase fluorometry of chlorophyll a fluorescence in thylakoid and PS II-enriched membranes. Photochem. Photobiol. 58: 438–445.

    Article  PubMed  CAS  Google Scholar 

  • Grace, S.C. and Logan, B.A. 1996. Acclimation of foliar antioxidant systems to growth irradiance in three broad-leaved evergreen species. Plant Physiol. 112: 1631–1640.

    PubMed  CAS  Google Scholar 

  • Greenfield, S., Seibert, M., Govindjee and Wasielewski, M.R. 1997. Direct measurement of the effective rate of primary charge separation in isolated Photosystem II reaction centers. J. Phys. Chem. 101: 2251–2255.

    CAS  Google Scholar 

  • Hansson, O. and Wydrzynski, T. 1990. Current perceptions of Photosystem II. Photosynth. Res. 23: 131–162.

    Article  CAS  Google Scholar 

  • Heber, U. and Krause, G.H. 1971. Transfer of carbon, phosphate energy and reducing equivalents across the chloroplast envelope. In: Photosynthesis and Photorespiration, (Hatch, M.D., Osmond, C.B. and Slatyer, R.O. eds.), pp. 218–225, New York: Wiley Interscience.

    Google Scholar 

  • Holcomb, C.T. and Knox, R.S. 1996. The relationship of intercompartmental excitation transfer rate constants to those of an underlying physical model. Photosynth. Res. 50: 117–131.

    Article  Google Scholar 

  • Horton, P., Ruban, A.V. and Walters, R.G. 1994. Regulation of light harvesting in green plants. Plant Physiol. 106: 415–420.

    PubMed  CAS  Google Scholar 

  • Horton, P., Ruban, A.V. and Walters, R.G. 1996. Regulation of light-harvesting in green plants. Annu. Rev. Plant Physiol. Plant Mol Biol. 47: 655–684.

    Article  PubMed  CAS  Google Scholar 

  • Jennings, R.C., Flavio, F.M., Finzi, L. and Zucchelli, G. 1996. Slow exciton trapping in Photosystem II: a possible physiological role. Photosynth. Res. 47: 167–173.

    Article  CAS  Google Scholar 

  • Joshi, M.K. and Mohanty, P. 1995. Probing photosynthetic performance by chlorophyll a fluorescence analysis and interpretation of fluorescence parameters. J. Sci. Indust. Res. 54: 155–174.

    CAS  Google Scholar 

  • Kirilovsky, D., Rutherford, W.A. and Etienne, A.-L. 1994. Influence of DCMU and ferricyanide on photodamage in Photosystem II. Biochemistry 33: 3087–3095.

    Article  PubMed  CAS  Google Scholar 

  • Knoetzel, J. and Simpson, D. 1991. Expression and organization of antenna proteins in the light-and temperature-sensitive barley mutant chlorinain-104 Planta 185: 111–123.

    Article  CAS  Google Scholar 

  • Kühlbrandt, W., Wang, D.N. and Fujiyoshi, Y. 1994. Atomic model of plant light-harvesting complex by electron crystallography. Nature 367: 614–621.

    Article  PubMed  Google Scholar 

  • Lee, A. and Thornber, J.P. 1995. Analysis of the pigment stoichiometry of pigmentprotein complexes from barley (Hordeum vulgare). Plant Physiol. 107: 565–574.

    Article  PubMed  CAS  Google Scholar 

  • Lin, S. and Knox, R.S. 1991. Studies of excitation energy transfer within the green alga Chlamydomonas reinhardtii and its mutants at 77 K. Photosynth. Res. 27: 157–168.

    CAS  Google Scholar 

  • Long, S.P., Humphries, S. and Falkowski, P.G. 1994. Photoinhibition of photosynthesis in nature. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45: 633–662.

    Article  CAS  Google Scholar 

  • Marin, E., Nussaume, L., Quesada, A., Gonneau, M, Sotta, B., Hugueney, P., Frey, A. and Marion-Poll, A. 1996. Molecular indentification of zeaxanthin epoxidase of Nicotiana plumbaginifolia, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana. EMBO J. 15: 2331–2342.

    PubMed  CAS  Google Scholar 

  • Mills, J.D. and Mitchell, P. 1982. Modulation of coupling factor ATPase activity in intact chloroplasts. Reversal of thiol modulation in the dark. Biochim. Biophys. Acta 679: 75–83.

    Article  CAS  Google Scholar 

  • Mitchell, P. 1968. “Chemiosmotic Coupling and Energy Transduction.” Glynn Res., Bodmin Cornwall, England.

    Google Scholar 

  • Osmond, C.B. and Grace, S.C. 1995. Perspectives on photoinhibition and photorespiration in the field: quintessential inefficiencies of the light and dark reactions of photosynthesis? J. iExptl. Bot. 46: 1351–1362.

    Article  CAS  Google Scholar 

  • Ottander, C., Campbell, D. and Öquist, G. 1995. Seasonal changes in Photosystem II organization and pigment composition in Pinus sylvestris, Planta 197: 176–183.

    Article  CAS  Google Scholar 

  • Pearlstein, R.M. 1996. Coupling of exciton motion in the core antenna and primary charge separation in the reaction center. Photosynth. Res. 48: 75–82.

    Article  CAS  Google Scholar 

  • Pogson, B., McDonald, K., Truong, M., Britton, G., DellaPenna, D. 1996. Arabidopsis carotenoid mutants demonstrate that lutein is not essential for photosynthesis in higher plants. Plant Cell 8: 1627–1639.

    PubMed  CAS  Google Scholar 

  • Renger, G., Eckert, H.-J., Bergmann, A., Bernarding, J., Liu, B., Napiwotzki, A., Reifarth, F. and Eicher, H.J. 1995. Fluorescence and spectroscopic studies of exciton trapping and electron transfer in Photosystem II of higer plants. Aust. J. Plant Physiol. 22: 167–181.

    Article  CAS  Google Scholar 

  • Russell, A.W., Critchley, C., Robinson, S.A., Franklin, L.A., Seaton, G.R., Chow, W.S., Anderson, J.M. and Osmond, C.B. 1995. Photosystem II regulation and dynamics of the chloroplast D1 protein in Arabidopsis leaves during photosynthesis and photoinhibition. Plant Physiol. 107: 943–952.

    PubMed  CAS  Google Scholar 

  • Satoh, K. 1996. Introduction to Photosystem II reaction center-isolation and biochemical and biophysical characterization. In: Oxygenic Photosynthesis: The Light Reactions (Ort, D.R., Yocum, C.F. eds.), pp. 193–211, Kluwer, Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Schatz, G.H., Brock, H. and Holzwarth, A.R. 1988. A kinetic and energetic model for the primary processes in Photosystem II. Biophys. J. 54: 397–405.

    Article  PubMed  CAS  Google Scholar 

  • Schreiber, U. and Avron, M. 1979. Properties of ATP-driven reverse electron flow in chloroplasts. Biochim. Biophys. Acta 546: 436–447.

    Article  PubMed  CAS  Google Scholar 

  • Siefermann, D. 1987. The light-harvesting and protective functions of carotenoids in photosynthetic membranes. Physiol. Plant 69: 561–568.

    Article  Google Scholar 

  • Siefermann, D. and Yamamoto, H.Y. 1975. Properties of NADPH and oxygen-dependent zeaxanthin epoxidation in isolated chloroplasts. A transmembrane model for the violaxanthin cycle. Arch. Biochem. Biophys. 171: 70–77.

    Article  CAS  Google Scholar 

  • Srivastava, A. and Strasser, R.J. 1997. Constructive and destructive actions of light on the photosynthetic apparatus. J. Sci. and Indust. Res. 56: 133–148.

    CAS  Google Scholar 

  • Trebst, A. and Depka, B. 1997. Role of carotene in the turnover and assembly of PS II in Chlamydomonas reinhardtii. FEBS Lett. 400: 359–362.

    Article  PubMed  CAS  Google Scholar 

  • Trissl, H.-W. and Lavergne, J. 1995. Fluorescence induction from Photosystem II: analytical equations for the yields of photochemistry and fluorescence derived from analysis of a model including exciton-radical pair equilibrium and restricted energy transfer between photosynthetic units. Aust. J. Plant Physiol. 22: 183–193.

    Article  CAS  Google Scholar 

  • Tyystjärvi, E., Kettunen, R. and Aro, E.-M. 1994. The rate constant of photoinhibition in vitro is independent of the antenna size of Photosystem II but depends on temperature. Biochim. Biophys. Acta 1186: 177–185.

    Article  Google Scholar 

  • van Dorssen, R.J., Breton, J., Plijter, J.J., Satoh, K., van Gorkom, H.J. and Amesz, J. 1987. Spectroscopic properties of the reaction center and of the 47 kDa chlorophyll protein of PS II. Biochim. Biophys. Acta 893: 267–274.

    Article  Google Scholar 

  • van Grondelle, R., Dekker, J.P., Gillbro, T. and Sundstrom, V. 1994. Energy transfer and trapping in photosynthesis. Biochim. Biophys. Acta 1187: 1–65.

    Article  CAS  Google Scholar 

  • Vass, I., Gatzen, G. and Holzwarth, A.R. 1993. Picosecond time-resolved fluorescence studies on photoinhibition and double reduction of QA in Photosystem II. Biochim. Biophys. Acta 1183: 388–396.

    Article  CAS  Google Scholar 

  • Velthuys, B.R. 1981. Electron dependent competition between plastoquinone and inhibitors for binding to Photosystem II. FEBS Lett. 126: 277–281.

    Article  CAS  Google Scholar 

  • Vermaas, W.F.J., Styring, S., Schroeder, W.P. and Andersson, B. 1993. Photo synthetic water oxidation: the protein framework. Photosynth. Res. 38: 249–263.

    Article  CAS  Google Scholar 

  • Wagner, B., Goss, R., Richter, M., Wild, A. and Holzwarth, A.R. 1996. Picosecond time-resolved study on the nature of high-energy-state quenching in isolated pea thylakoids: Different localization of zeaxanthin dependent and independent quenching mechanisms. J. Photochem. Photobiol. 36: 339–350.

    Article  CAS  Google Scholar 

  • Walters, R.G., Ruban, A.V. and Horton, P. 1994. Higher plant light-harvesting complexes LHCIIa and LHCIIc are bound by dicyclohexylcarbodiimide during inhibition of energy dissipation. Eur. J. Biochem. 226: 1063–1069.

    Article  PubMed  CAS  Google Scholar 

  • Whitmarsh, J. and Govindjee 1995. Photosynthesis. Encyclopedia of Applied Physics. 13: 513–532.

    Google Scholar 

  • Whitmarsh, J. and Pakrasi, H.B. 1996. Form and function of cytochrome b559. In: Oxygenic Photosynthesis: The Light Reactions. Ort D.R. and Yocum C.F. (eds), pp. 249–264, Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Xiong, J., Subramaniam, S. and Govindjee 1996. Modeling of the D1/D2 proteins and cofactors of the Photosystem II reaction center: implications for herbicide and bicarbonate binding. Protein Science 5: 2054–2073.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, H.Y. 1979. Biochemistry of the xanthophyll cycle in higher plants. Pure Appl. Chem. 51: 639–648.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gilmore, A.M., Govindjee (1999). How Higher Plants Respond to Excess Light: Energy dissipation in photosystem II. In: Singhal, G.S., Renger, G., Sopory, S.K., Irrgang, KD., Govindjee (eds) Concepts in Photobiology. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4832-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4832-0_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6026-4

  • Online ISBN: 978-94-011-4832-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics