Skip to main content

Photophosphorylation

  • Chapter
Concepts in Photobiology

Summary

The formation of ATP from ADP and phosphate in chloroplasts is coupled to photosynthetic electron transport. While electrons flow through the electron transport chain, protons are translocated across the thylakoid membrane. The resulting transmembrane electrochemical proton potential difference is the driving force for the endergonic phosphorylation of ADP. ATP is formed while the protons flow back along the gradient through a membranebound reversible proton translocating ATPase (“ATP synthase”). This enzyme consists of a membrane-integral hydrophobic sector (CF0) responsible for proton transport, and an attached hydrophilic sector (CF1) which carries three catalytic sites. Coupling involves energy-linked movements of the CF0CF1 structure which effect the binding of the substrates and the release of the product ATP at the catalytic sites, but no energy is required for the synthesis of ATP in the catalytic sites. The activity of the ATP synthase is controlled by the extent of the proton gradient, by redox modification linked to photosynthetic electron flow, and by nucleotides. The system is optimized to produce ATP but avoid wasteful ATP hydrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrahams, J.P., Leslie, A.G.W., Lutter, R. and Walker, J.E. 1994. Structure at 2.8Å resolution of F1-ATPase from bovine heart mitochondria. Nature 370: 621–628.

    Article  PubMed  CAS  Google Scholar 

  • Altvater-Mackensen, R. and Strotmann, H. 1988. Contents of endogenous adenine nucleotides and ATPase activity of isolated whole chloroplasts. Biochim. Biophys. Acta 934: 213–219.

    Article  CAS  Google Scholar 

  • Amano, T., Hisabori, T., Muneyuki, E. and Yoshida, M. 1996. Catalytic activities of α3β3γ complexes of F1-ATPase with 1, 2, or 3 incompetent catalytic sites. J. Biol. Chem. 271: 18128–18133.

    Article  PubMed  CAS  Google Scholar 

  • Amano, T., Tozawa, K., Yoshida, M. and Murakami, H. 1994. Spatial precision of a catalytic carboxylate of F1ATPase β subunit probed by introducing different carboxylate-containing side chains. FEBS Lett. 348: 93–98.

    Article  PubMed  CAS  Google Scholar 

  • Arnon, D.I., Allen, M.B. and Whatley, F.R. 1954. Photosynthesis by isolated chloroplasts. Nature 174: 394–396.

    Article  PubMed  CAS  Google Scholar 

  • Avron, M. 1960. Photophosphorylation by swiss-chard chloroplasts. Biochim. Biophys. Acta 40: 257–272.

    Article  PubMed  CAS  Google Scholar 

  • Avron, M. 1963. A coupling factor in photophosphorylation. Biochim. Biophys. Acta 77: 699–702.

    Article  CAS  Google Scholar 

  • Avron, M. and Sharon, N. 1960. Astudy of photophosphorylation with oxygen-18. Biochem. Biophys. Res. Commun. 2: 336–339.

    Article  Google Scholar 

  • Bar-Zvi, D. and Shavit, N. 1982. Modulation of the chloroplast ATPase by tight binding of nucleotides. Biochim. Biophys. Acta 681: 451–458.

    Article  CAS  Google Scholar 

  • Berden, J.A., Hartog, A.F. and Edel, C.M. 1991. Hydrolysis of ATP by F1 can be described only on the basis of a dual-site mechanism. Biochim. Biophys. Acta 1057: 151–156.

    Article  PubMed  CAS  Google Scholar 

  • Binder, A., Jagendorf, A. and Ngo, E. 1979. Isolation and composition of the subunits of spinach chloroplast coupling factor protein. J. Biol. Chem. 253: 3094–3100.

    Google Scholar 

  • Boekema, E.J., Schmidt, G., Gräber, P. and Berden, J. 1988. Structure of the ATP-synthase from chloroplasts and mitochondria studied by electron microscopy. Z. Naturforsch. 43c: 219–225.

    Google Scholar 

  • Bolle, C., Sopory, S., Lübberstedt, Th., Herrmann, R.G. and Oelmüller, R. 1994. The role of plastids in the expression of nuclear genes for thylakoid proteins studied with chimeric β-glucuronidase gene fusions. Plant Physiol. 105: 1355–1364.

    PubMed  CAS  Google Scholar 

  • Bolle, C., Kusnetsov, V., Herrmann, R.G. and Oelmüller, R. 1996. The spinach AtpC and AtpD genes contain elements for light-regulated, plastid-dependent and organ specific expression in the vicinity of the transcription start sites. Plant J. 9: 21–30.

    Article  PubMed  CAS  Google Scholar 

  • Böttcher, B., Gräber, P., Boekema, E.J. and Lücken, U. 1995. Electron cryomicroscopy of two-dimensional crystals of the H+-ATPase from chloroplasts. FEBS Lett. 373: 262–264.

    Article  PubMed  Google Scholar 

  • Boudreau, E., Otis, C. and Turmel, M. 1994. Conserved gene clusters in the highly rearranged chloroplast genomes of Chlamydomonas moewusii and Chlamydomonas reinhardtii. Plant Mol. Biol. 24: 585–602.

    Article  PubMed  CAS  Google Scholar 

  • Boyer, P.D. 1993. The binding change mechanism for ATP synthase—Some probabilities and possibilities. Biochim. Biophys. Acta 1140: 215–250.

    Article  PubMed  CAS  Google Scholar 

  • Cox, G.B., Fimmel, A.L., Gibson, F. and Hatch, L. 1986. The mechanism of ATP synthase: A reassessment of the functions of the b and a subunits. Biochim. Biophys. Acta 849: 62–69.

    Article  PubMed  CAS  Google Scholar 

  • Cox, G.B., Jans, D.A., Fimmel, A.L., Gibson, F. and Hatch, L. 1984. The mechanism of ATP synthase. Conformational change by rotation of the b-subunit. Biochim. Biophys. Acta 768: 201–208.

    Article  PubMed  CAS  Google Scholar 

  • Cozens, A.L. and Walker, J.E. 1987. The organization and sequence of the genes for ATP synthase subunits in the cyanobacterium Synechococcus 6301. J. Mol. Biol. 194: 359–383.

    Article  PubMed  CAS  Google Scholar 

  • Cross, R.L. 1981. The mechanism and regulation of ATP synthesis by F1ATPases. Annu. Rev. Biochem. 50: 681–714.

    Article  PubMed  CAS  Google Scholar 

  • Cross, R.L. 1992. The reaction mechanism of F0F1-ATP synthases. In: Molecular Mechanisms in Bioenergetics (Ernster, L., ed.), pp. 317–330. Elsevier Science Publishers, Amsterdam.

    Chapter  Google Scholar 

  • Dann, M.S. and McCarty, R.E. 1992. Characterization of the activation of membrane-bound and soluble CF1 by thioredoxin. Plant Physiol. 99: 153–160.

    Article  PubMed  CAS  Google Scholar 

  • Davenport, J.W. and McCarty, R.E. 1981. Quantitative aspects of adenosine triphosphatedriven proton translocation in spinach chloroplast thylakoids. J. Biol. Chem. 256: 8947–8954.

    PubMed  CAS  Google Scholar 

  • Davenport, J.W. and McCarty, R.E. 1984. An analysis of proton fluxes coupled to electron transport and ATP synthesis in chloroplast thylakoids. Biochim. Biophys. Acta 766: 363–374.

    Article  CAS  Google Scholar 

  • Dimroth, P. 1997. Primary sodium ion translocating enzymes. Biochim. Biophys, Acta 1318: 11–51.

    Article  CAS  Google Scholar 

  • Duncan, T.M., Bulygin, V.V., Zhou, Y., Hutcheon, M.L. and Cross, R.L. 1995. Rotation of subunits during catalysis by Escherichia coli F1-ATPase. Proc. Natl. Acad. Sci. USA 92: 10964–10968.

    Article  PubMed  CAS  Google Scholar 

  • Engelbrecht, S. and Junge, W. 1990. Subunit δ of H+-ATPases: at the interface between proton flow and ATP synthesis. Biochim. Biophys. Acta 1015: 379–390.

    Article  PubMed  CAS  Google Scholar 

  • Feng, Y. and McCarty, R.E. 1990. Purification and reconstitution of active chloroplast Fo. J. Biol. Chem. 265: 5104–5109.

    PubMed  CAS  Google Scholar 

  • Fiedler, H.R., Ponomarenko, S., von Gehlen, N. and Strotmann, H. 1994. Proton gradientinduced changes of the interaction between CF0 and CF1 as probed by cleavage with NaSCN. Biochim. Biophys. Acta 1188: 29–34.

    Article  CAS  Google Scholar 

  • Fillingame, R.H. 1992. Subunit c of F0F1 ATP synthase: structure and role in transmembrane energy transduction. Bichim. Biophys. Acta 1101: 240–243.

    CAS  Google Scholar 

  • Fiolet, J.W.T., Bakker, E.P. and van Dam, K. 1974. The fluorescent properties of acridines in the presence of chloroplasts or liposomes. On the quantitative relationship between the fluorescence quenching and the transmembrane proton gradient. Biochim. Biophys. Acta 368: 432–445.

    Article  PubMed  CAS  Google Scholar 

  • Garin, J., Boulay, F., Issertel, J.P., Lunardi, J. and Vignais, P.V. 1986. Identification of amino acid residues photolabeled with 2-azido [α-32P]adenosine diphosphate in the β subunit of beef heart mitochondrial F1-ATPase. Biochemistry 25: 4431–437.

    Article  PubMed  CAS  Google Scholar 

  • Good, N.E. 1977. Uncoupling of electron transport from phosphorylation in chloroplasts. In Encyclopedia of Plant Physiology, Vol. 5: Photosynthesis I, Photosynthetic Electron Transport and Photophosphorylation (Trebst, A. and Avron, M. eds.), pp. 429–436, Springer-Verlag, Berlin.

    Google Scholar 

  • Gräber, P. and Labahn, A. 1992. Proton transport-coupled unisite catalysis at the H+-ATPase from chloroplasts. J. Bioenerg. Biomembr. 24: 493–497.

    Article  PubMed  Google Scholar 

  • Gräber, P., Böttcher, B. and Boekema, E.J. 1990. The structure of the ATP-synthase from chloroplasts. In Bioelectrochemistry III (Milazzo, G. and Blank, M., eds.) pp. 247–276, Plenum Press, New York.

    Google Scholar 

  • Gray M.W. 1989. The evolutionary origins of organelles. Trends in Genetics 5: 294–299

    Article  PubMed  CAS  Google Scholar 

  • Groth, G. and Junge, W. 1993. Proton slip of chloroplast ATPase: Its nucleotide dependence, energy threshold and relation to an alternating site mechanism of catalysis. Biochemistry 32: 8103–8111.

    Article  PubMed  CAS  Google Scholar 

  • Grubmeyer, C., Cross, R.L. and Penefsky, H.S. 1982. Mechanism of ATP hydrolysis by beef heart mitochondrial ATPase. Rate constant for elementary steps in catalysis at a single site. J. Biol. Chem. 257: 12092–12100.

    PubMed  CAS  Google Scholar 

  • Hauska, G. 1980. Measurement of phosphorylation associated with photosystem I. Methods in Enzymology 69: 648–658.

    Article  CAS  Google Scholar 

  • Heinen, G. and Strotmann, H. 1989. Photophosphorylation as function of ADP concentration at varying transmembrane proton gradients. Z Naturforsch. 44c: 473–479.

    Google Scholar 

  • Hennig, J. and Herrmann, R.G. 1986. Chloroplast ATP synthase of spinach contains nine nonidentical subunit species, six of which are encoded by plastid chromosomes in two operons in a phylogenetically conserved arrangement. Mol. Gen. Genet. 203: 117–128.

    Article  CAS  Google Scholar 

  • Herrmann, R.G., Westhoff, P., Alt, J., Winter, P., Tittgen, J., Bisanz, C., Sears, B.B., Nelson, N., Hurt, E., Hauska, G., Viebrock, A. and Sebald, W. 1983. Identification and characterization of genes for polypeptides of the thylakoid membrane. In Structure and Function of the Plant Genome (Cifferi, O. and Dure, L., eds.) Vol. III, pp. 143–153, Plenum Publ. Corp., New York.

    Chapter  Google Scholar 

  • Herrmann, R.G., Westhoff P., Alt J., Tittgen J. and Nelson N. 1985. Thylakoid membrane proteins and their genes. In: Molecular Form and Function of the Plant Genome (van Vloten-Doting, L., Groot, G.S.P. and Hall, T.C., eds.) pp. 233–256. Plenum Publishing Corp., New York.

    Google Scholar 

  • Hill, R. 1939. Oxygen produced by isolated chloroplasts. Proc. Roy. Soc. London B127: 192–210.

    Google Scholar 

  • Hind, G. and Jagendorf, A.T. 1963. Separation of light and dark stages in photophosphorylation. Proc. Natl. Acad. Sci. USA 49: 715–722.

    Article  PubMed  CAS  Google Scholar 

  • Hochman, Y and Carmeli, C. 1981. Correlation between the kinetics of activation and inhibition of adenosinetriphosphatase activity by divalent metal ions and the binding of manganese to chloroplast coupling factor 1. Biochemistry 20: 6287–6292.

    Article  PubMed  CAS  Google Scholar 

  • Hu, C.-Y., Houseman, L.P., Morgan, L., Webber, A.N. and Frasch, W.D. 1996. Catalytic and EPR studies of the βE2O4Q mutant of the chloroplast F1-ATPase from Chlamydomonas reinhardtii. Biochemistry 35: 12201–12211.

    Article  PubMed  CAS  Google Scholar 

  • Jagendorf, A.T. and Uribe, E. 1966. ATP formation caused by acid-base transition of spinach chloroplasts. Proc. Natl. Acad. Sci. USA 55: 170–177.

    Article  PubMed  CAS  Google Scholar 

  • Junesch, U. and Gräber, P. 1984. The rate of ATP-synthesis as function of ΔpH and Δψ in preactivated and non-preactivated chloroplasts. In Advances in Photosynthesis Research (Sybesma, C., ed.) Vol. II, pp. 431–436, Martinus Nijhoff/Dr. W. Junk Publishers, The Hague.

    Google Scholar 

  • Junesch, U. and Gräber, P. 1985. The rate of ATP synthesis as a function of ΔpH in normal and dithiothreitol-modified chloroplasts. Biochim. Biophys. Acta 809: 429–434.

    Article  CAS  Google Scholar 

  • Junesch, U. and Gräber, P. 1987. Influence of the redox state and the activation of the chloroplast ATP synthase on proton-transport-coupled ATP synthesis/hydrolysis. Biochim. Biophys. Acta 893: 275–288.

    Article  CAS  Google Scholar 

  • Junge, W. 1977. Physical aspects of light harvesting, electron transport and electrochemical potential generation in photosynthesis of green plants. In Encyclopedia of Plant Physiology, Vol. 5: Photosynthesis I, Photosynthetic Electron Transport and Photophosphorylation (Trebst, A. and Avron, M. eds.) pp. 59–93, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Junge, W. and Witt, H.T. 1968. On the ion transport system of photosynthesis. Investigations on a molecular level. Z. Naturforsch. 23b: 244–254.

    Google Scholar 

  • Junge, W., Ausländer, W., McGeer, A.J. and Runge, T. 1979. The buffering capacity of the internal phase of thylakoids and the magnitude of the pH changes inside under flashing light. Biochim. Biophys. Acta 546: 121–141.

    Article  PubMed  CAS  Google Scholar 

  • Junge, W., Lill, H. and Engelbrecht, S. 1997. ATP synthase: an electrochemical transducer with rotary mechanics. Trends in Biochem. Sci. 22: 420–423.

    Article  CAS  Google Scholar 

  • Ketcham, S.R., Davenport, J.W., Warncke, K. and McCarty, R.E. 1984. Role of the γ subunit of chloroplast coupling factor 1 in the light dependent activation of photophosphorylation and ATPase activity by dithiothreitol. J. Biol. Chem. 259: 7281–7293.

    Google Scholar 

  • Komatsu, M. and Murakami, S. 1976. Inhibition of photophosphorylation by ATP and the role of magnesium in photophosphorylation. Biochim. Biophys. Acta 423: 103–110.

    Article  PubMed  CAS  Google Scholar 

  • Komatsu-Takaki, M. 1989. Energy-dependent changes in conformation in the ε subunit of the chloroplast ATP synthase. J. Biol. Chem. 264: 17750–17753.

    PubMed  CAS  Google Scholar 

  • Komatsu-Takaki, M. 1996. Energizing effects of illumination on the reactivities of lysine residues of the y subunit of chloroplast ATP synthase. Eur. J. Biochem. 236: 470–475.

    Article  PubMed  CAS  Google Scholar 

  • Kothen, G., Schwarz, O. and Strotmann, H. 1995. Enzyme kinetic studies on chloroplast H+-ATPase by a ΔpH clamp technique. In Research in Photosynthesis (Murata, N., ed.) Vol. II, pp. 661–668. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Kothen, G., Schwarz, O. and Strotmann, H. 1995. The kinetics of photophosphorylation at clamped ΔpH indicate a random order of substrate binding. Biochim. Biophys. Acta 1229, 208–214.

    Article  Google Scholar 

  • Lill, H., Engelbrecht, S., Schönknecht, G. and Junge, W. 1986. The proton channel, CF0, in thylakoid membranes—Only a low proportion of CF1-lacking CF0 is active with a high unit conductance (169 fS). Eur. J. Biochem. 160: 627–634.

    Article  PubMed  CAS  Google Scholar 

  • Lill, H. Hensel, F., Junge, W. and Engelbrecht, S. 1997. Chloroplast F-ATPase: Crosslinking of engineered δ to (αβ)3. J. Biol. Chem. 271: 32737–32742.

    Google Scholar 

  • Lohse, D. and Strotmann, H. 1989. Reactions related with ΔμH+-dependent activation of the chloroplast H+-ATPase. Biochim. Biophys. Acta 976: 94–101.

    Article  CAS  Google Scholar 

  • Lohse, D., Thelen, R. and Strotmann, H. 1989. Activity equilibria of the thiol-modulated chloroplast H+-ATPase as a function of the proton gradient in the absence and presence of ADP and arsenate. Biochim. Biophys. Acta 976: 85–93.

    Article  CAS  Google Scholar 

  • McCarty, R.E. 1977. Energy transfer inhibitors of photophosphorylation in chloroplasts. In Encyclopedia of Plant Physiology, Vol. 5: Photosynthesis I, Photosynthetic Electron Transport and Photophosphorylation (Trebst, A. and Avron, M. eds.) pp. 437–447, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Mehler, A.H. 1951. Studies on reactions of illuminated chloroplasts. I. Mechanism of the reduction of oxygen and other Hill reagents. Arch. Biochem. Biophys. 33: 65–77.

    Article  PubMed  CAS  Google Scholar 

  • Mills, J.D. and Mitchell, P. 1984. Thiol modulation of the chloroplast proton motive ATPase and its effect on photophosphorylation. Biochim. Biophys. Acta 764: 93–104.

    Article  CAS  Google Scholar 

  • Mills, J.D., Mitchell, P. and Schürmann, P. 1980. Modulation of coupling factor ATPase activity in intact chloroplasts. The role of the thioredoxin system. FEBS Lett. 112: 173–177.

    Article  CAS  Google Scholar 

  • Mitchell, P. 1961. Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism. Nature 191: 144–148.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, P. 1966. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol Rev. 41: 445–502.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, P. 1974. A chemiosmotic molecular mechanism for proton-translocating adenosine triphosphatases. FEBS Lett. 43: 189–194.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, N. 1992. Evolution of organellar proton-ATPases. Biochim. Biophys. Acta 1100: 109–124.

    Article  PubMed  CAS  Google Scholar 

  • Neumann, J. and Jagendorf, A.T 1964. Light-induced pH-changes related to phosphorylation by chloroplasts. Arch. Biochem. Biophys. 107: 109–119.

    Article  PubMed  CAS  Google Scholar 

  • Nishimura, M., Ito, T. and Chance, B. 1962. Studies on bacterial photophosphorylation. II. A sensitive and rapid method of determination of photophosphorylation. Biochim. Biophys. Acta 59: 177–182.

    Article  PubMed  CAS  Google Scholar 

  • Noji, H., Yasuda, R., Yoshida, M. and Kinosita, Jr., K. 1997. Direct observation of the rotation of the F,-ATPase. Nature 386: 299–302.

    Article  PubMed  CAS  Google Scholar 

  • Ort, D.R. and Melandri, B.A. 1982. Mechanism of ATP Synthesis in Photosynthesis: Energy Conversion by Plants and Bacteria (Govindjee, ed.) Vol. I, pp. 537–587, Academic Press, London.

    Google Scholar 

  • Ort, D.R. and Oxborough, K. 1992. In situ regulation of chloroplast coupling factor activity. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43: 269–291.

    Article  CAS  Google Scholar 

  • Pancic, P.G. and Strotmann, H. 1993. Structure of the nuclear encoded γ subunit of CF0CF1 of the diatom Odontella sinensis including its presequence. FEBS Lett. 320: 61–66.

    Article  PubMed  CAS  Google Scholar 

  • Pancic, P.G., Strotmann, H. and Kowallik, K. 1992. Chloroplast ATPase genes in the diatom Odontella sinensis reflect cyanobacterial characters in structure and arrangement. J. Mol. Biol. 224: 529–536.

    Article  PubMed  CAS  Google Scholar 

  • Pick, U. and Racker, E. 1979. Purification and reconstitution of the N,N′-dicyclohexylcarbodiimide-sensitive ATPase complex from spinach chloroplasts. J. Biol. Chem. 254: 2793–2799.

    PubMed  CAS  Google Scholar 

  • Pick, U., Rottenberg, H. and Avron, M. 1973. Effect of phosphorylation on the size of the proton gradient across chloroplast membranes. FEBS Lett. 32: 91–94.

    Article  PubMed  CAS  Google Scholar 

  • Polle, A. and Junge, W. 1986. The slow rise of the flash-light-induced alkalization by photosystem II of the suspending medium of thylakoids is reversibly related to thylakoid stacking. Biochim. Biophys. Acta 848: 257–264.

    Article  CAS  Google Scholar 

  • Portis, A.R. Jr. and McCarty, R.E. 1973. On the pH dependence of the light-induced hydrogen ion gradient in spinach chloroplasts. Arch. Biochem. Biophys. 156: 621–625.

    Article  PubMed  CAS  Google Scholar 

  • Reeves, S.G. and Hall, D.O. 1978. Photophosphorylation in chloroplasts. Biochim. Biophys. Acta 463: 275–297.

    Article  PubMed  CAS  Google Scholar 

  • Reith, M. and Munholland, J. 1995. Complete nucleotide sequence of the Porphyra purpurea chloroplast genome. Plant Mol. Biol. Rep. 13: 333–335.

    Article  CAS  Google Scholar 

  • Richter, M.L. and McCarty, R.E. 1987. Energy-dependent changes in the conformation of the ε subunit of the chloroplast ATP synthase. J. Biol. Chem. 262: 15037–15040.

    PubMed  CAS  Google Scholar 

  • Rosing, J. and Slater, E.C. 1972. The value of ΔG° for the hydrolysis of ATP. Biochim. Biophys. Acta 267: 275–286.

    Article  PubMed  CAS  Google Scholar 

  • Rottenberg, H., Grunwald, T. and Avron, M. 1972. Determination of ΔpH in chloroplasts. I. Distribution of 14C methylamine. Eur. J. Biochem. 25: 54–63.

    Article  PubMed  CAS  Google Scholar 

  • Sabbert, D., Engelbrecht, S. and Junge, W. 1996. Intersubunit rotation in active F-ATPase. Nature 381: 623–625.

    Article  PubMed  CAS  Google Scholar 

  • Schlodder, E., Gräber, P. and Witt, H.T. 1982. Mechanism of phosphorylation in chloroplasts. In Electron Transport and Photophosphorylation (Barber, J., ed.) pp. 105–175, Elsevier, Amsterdam.

    Google Scholar 

  • Schönknecht, G., Hedrich, R., Junge, W. and Raschke, K. 1988. A voltage-dependent chloride channel in the photosynthetic membrane of a higher plant. Nature 336: 589–592.

    Article  Google Scholar 

  • Schubert, K., Liese, F. and Rumberg, B. 1990. Analysis of the variability of the H/e stoichiometry in spinach chloroplasts. In Current Research in Photosynthesis (Baltscheffsky, M., ed.) Vol. III, pp. 279–282. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Schuldiner, S., Rottenberg, H. and Avron, M. 1972. Determination of ΔpH in chloroplasts. II. Fluorescent amines as a probe for the determination of ΔpH in chloroplasts. Eur. J. Biochem. 25: 64–70.

    Article  PubMed  CAS  Google Scholar 

  • Schumann, J. and Strotmann, H. 1981. The mechanism of induction and deactivation of light-triggered ATPase. In Photosynthesis II. Electron Transport and Photophosphorylation (Akoyunoglou, G., ed.) Vol. II, pp. 881–892. Balaban Intern. Science Service, Philadelphia, Pa.

    Google Scholar 

  • Schumann, J., Richter, M.L. and McCarty, R.E. 1985. Partial proteolysis as a probe of the conformation of the gamma subunit in activated soluble and membrane-bound chloroplast coupling factor 1. J. Biol. Chem. 260: 11817–11823.

    PubMed  CAS  Google Scholar 

  • Schwarz, O., Schürmann, P. and Strotmann, H. 1997. Kinetics and thioredoxin specificity of thiol modulation of the chloroplast H+-ATPase (CF0CF1). J. Biol. Chem. 272: 16924–16927.

    Article  PubMed  CAS  Google Scholar 

  • Sebald, W. and Hoppe, J. 1981. On the structure and genetics of the proteolipid subunit of the ATP synthase complex. Curr. Top. Bioenerget. 12: 1–4.

    CAS  Google Scholar 

  • Senter, P., Eckstein, F. and Kagawa, Y. 1983. Substrate-metal-adenosine 5′-triphosphate chelate structure and stereochemical course of reaction catalyzed by the adenosinetriphosphatase from the thermophilic bacterium PS3. Biochemistry 22: 5514–5518.

    Article  CAS  Google Scholar 

  • Shavit, N. 1980. Energy transduction in chloroplasts: structure and function of the ATPase complex. Annu. Rev. Biochem. 49: 111–138.

    Article  PubMed  CAS  Google Scholar 

  • Slater, E.C. 1953. Mechanism of phosphorylation in the respiratory chain. Nature 172: 975–978.

    Article  PubMed  CAS  Google Scholar 

  • Strotmann, H. and Bickel-Sandkötter, S. 1977. Energy-dependent exchange of adenine nucleotides on chloroplast coupling factor (CF1). Biochim. Biophys. Acta 460: 126–135.

    Article  PubMed  CAS  Google Scholar 

  • Strotmann, H. and Bickel-Sandkötter, S. 1984. Structure, function, and regulation of chloroplast ATPase. Annu. Rev. Plant Physiol. 35: 97–120.

    Article  CAS  Google Scholar 

  • Strotmann, H., Hesse, H. and Edelmann, K. 1973. Quantitative determination of coupling factor CF1 of chloroplasts. Biochim. Biophys. Acta 314: 202–210.

    Article  PubMed  CAS  Google Scholar 

  • Strotmann, H., Kleefeld, S. and Lohse, D. 1987. Control of ATP hydrolysis in chloroplasts. FEBS Lett. 221: 265–269.

    Article  CAS  Google Scholar 

  • Strotmann, H., Shavit, N. and Leu, S. 1998. Assembly and function of the chloroplast ATP Synthase. In Advances in Photosynthesis. Molecular Biology of Chloroplasts and Mitochondria in Chlamydomonas (Rochaix, J.-D., Goldschmidt-Clermont, M. and Merchant, S., eds.), Kluwer Academic Publishers, Dordrecht, in press.

    Google Scholar 

  • Strotmann, H., Thelen, R., Müller, W. and Baum, W. 1990. A ΔpH clamp method for analysis of steady state kinetics of photophosphorylation. Eur. J. Biochem. 193: 879–886.

    Article  PubMed  CAS  Google Scholar 

  • Sugino, Y. and Miyoshi, Y. 1964. The specific precipitation of orthophosphate and some biochemical applications. J. Biol. Chem. 239: 2360–2364.

    PubMed  CAS  Google Scholar 

  • Tiedge, H., Schäfer, G. and Mayer, F. 1983. An electron microscopic approach to the quarternary structure of mitochondrial F1-ATPase. Eur. J. Biochem. 132: 37–45.

    Article  PubMed  CAS  Google Scholar 

  • Uhlin, U., Cox, G.B. and Guss, J.M. 1997. Crystal structure of the epsilon subunit of the proton translocating ATP synthase from Escherichia coli. Structure 5: 1219–1230.

    Article  PubMed  CAS  Google Scholar 

  • Van Walraven, H., Strotmann, H., Schwarz, O. and Rumberg, B. 1996. The H+/ATP coupling ratio of the ATP synthase from thiol-modulated chloroplasts and two cyanobacterial strains is four. FEBS Lett. 379: 309–313.

    Article  PubMed  Google Scholar 

  • Vik, S.B. and Antonio, B.J. 1994. A mechanism of proton translocation by F0F1 ATP synthases suggested by double mutants of the a subunit. J. Biol. Chem. 269: 30364–30369.

    PubMed  CAS  Google Scholar 

  • Vredenberg, W.J. and Tonk, W.J.M. 1975. On the steady state potential difference across the thylakoid membrane of chloroplasts in illuminated plant cells. Biochim. Biophys. Acta 387: 580–587.

    Article  PubMed  CAS  Google Scholar 

  • Webb, M.R., Grubmeyer, C., Penefsky, H.S. and Trentham, D.R. 1980. The stereochemical course of phosphoric residue transfer catalyzed by beef heart mitochondrial ATPase. J. Biol. Chem. 255: 11637–11639.

    PubMed  CAS  Google Scholar 

  • Werner, S., Schumann, J. and Strotmann, H. 1990. The primary structure of the γ-subunit of the ATPase from Synechocystis 6803. FEBS Lett. 261: 204–208.

    Article  PubMed  CAS  Google Scholar 

  • Wilkens, S., Dahlquist, F.W., Mclntosh, L.P., Donaldsonk L.W. and Capaldi, R.A. 1995. Structural features on the e subunit of the Escherichia coli ATP synthase determined by NMR spectroscopy. Nature Structural Biology 2: 961–967.

    Article  PubMed  CAS  Google Scholar 

  • Younis, H.M., Winget, G.D. and Racker, E. 1977. Requirement of the δ subunit of chloroplast coupling factor 1 for photophosphorylation. J. Biol. Chem. 252: 1814–1818.

    PubMed  CAS  Google Scholar 

  • Zhou, J.-M. and Boyer, P.D. 1992. MgADP and free P1 as the substrates and the Mg2+ requirement for photophosphorylation. Biochemistry 31: 3166–3171.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, J.-M., Xue, Z., Du, Z., Melese T. and Boyer, P.D. 1988. Relationship of tightly bound ADP and ATP to control and catalysis by chloroplast ATP synthase. Biochemistry 27: 5129–5135.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, Y., Duncan, T.M. and Cross, R.L. 1997. Subunit rotation in Escherichia coli F0F1 ATP synthase during oxidative phosphorylation. Proc. Natl. Acad. Sci. USA 94: 10583–10587.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Strotmann, H., Shavit, N. (1999). Photophosphorylation. In: Singhal, G.S., Renger, G., Sopory, S.K., Irrgang, KD., Govindjee (eds) Concepts in Photobiology. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4832-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4832-0_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6026-4

  • Online ISBN: 978-94-011-4832-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics