Skip to main content

Microsatellite Loci and the Origin of Modern Humans: A Bayesian Analysis

  • Chapter
Evolutionary Theory and Processes: Modern Perspectives
  • 208 Accesses

Abstract

Microsatellite loci have recently been used to date the migration Out-of-Africa of early modern humans. In this paper, an extension of the stepwise model (Zhivotovsky and Feldman 1995) is used to build a Bayesian hierarchical model for microsatellite data sampled from African and non-African populations. The prior information induced by the assumptions contained in the stepwise model is exploited to obtain the estimate of the time since the migration Out-of-Africa. The results obtained using our Bayesian model suggest that the original African populations that eventually made up the other populations could have comprised about 20,000-50,000 individuals and of these less than 15% could have migrated Out-of-Africa. The event of divergence can be dated to 100,000-300,000 years ago.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Berger, J. O. 1985. Statistical Decision Theory and Bayesian Analysis. Springer-Verlag, New York.

    Google Scholar 

  • Best, N., M. K. Cowles, and K. Vine. 1996. CODA: Convergence Diagnosis and Output Analysis Software for Gibbs sampling output. Electronic mail: bugs@mrc-bsu.cam.ac.uk, Cambridge: MRC Biostatistic Unit.

    Google Scholar 

  • Borland International. 1996. C++ Programmer’s Guide., CA: Borland International, Scott’s Valley.

    Google Scholar 

  • Bernardo, J. M., and A F. M. Smith. 1994. Bayesian Theory. Wiley, New York.

    Book  Google Scholar 

  • Besag, J., P. Green, D. Higdon, and K. Mengersen. 1995. Bayesian computation and stochastic systems. Statistical Science 10: 3–66.

    Article  Google Scholar 

  • Bowcock, A. M., A Ruiz Linares, J. Tomfohrde, E. Minch, J. R. Kidd, and L. L. Cavalli-Sforza. 1994. High resolution of human evolutionary trees with polymorphic microsatellites. Nature 386: 455–457.

    Article  Google Scholar 

  • Box, G. E. P., and G. C. Tiao. 1973. Bayesian Inference in Statistical Analysis. Addison-Wesley, Reading.

    Google Scholar 

  • Carlin, B. P., and T. A Louis. 1996. Bayes and empirical Bayes Methods for data analysis. Chapman and Hall, London.

    Google Scholar 

  • Casella, G., and R. L. Berger. 1990. Statistical Inference. Belmont, California, Duxbury.

    Google Scholar 

  • Casella, G., and E. I. George. 1992. Explaining the Gibbs sampler. The American Statistician 46: 167–174.

    Google Scholar 

  • Cavalli-Sforza, L. L., P. Menozzi, and A Piazza. 1994. The History and Geography of Human Genes. Princeton University Press, Princeton.

    Google Scholar 

  • Cowles, M K., and B. P. Carlin. 1996. Markov Chain Monte Carlo convergence diagnostics: a comparative review. Journal of the American Statistical Association 91: 883–904.

    Article  Google Scholar 

  • de Queiroz, A, M. J. Donoghue, and J. Kim. 1995. Separate versus combined analysis of phylogenetic evidence. Annual Review of Ecology and Systematics 26: 657–681.

    Article  Google Scholar 

  • Di Rienzo, A., A. C. Peterson, J. C. Garza, A M. Valdes, M. Slatkin, and N. B. Freimer. 1994. Mutational processes of simple-sequence repeat loci in human populations. Proceedings of the National Academy of Sciences of the U.S.A. 91: 3166–3170.

    Article  Google Scholar 

  • Estoup, A, L. Garnery, M. Solignac, and J. Cornuet. 1995. Microsatellite variation in Honey Bee (Apis mellifera L.) populations: hierarchical genetic structure and test of the infinite allele and stepwise mutation models. Genetics 140: 679–695.

    PubMed  CAS  Google Scholar 

  • Feldman, M. W., A Bergman, D. D. Pollock, and D. B. Goldstein. 1997. Microsatellite genetic distances with range constraints: analytic description and problems of estimation. Genetics 145: 207–216.

    PubMed  CAS  Google Scholar 

  • Garza, J. C., M. Slatkin, and N. B. Freimer. 1995. Microsatellite allele frequencies in Humans and Chimpanzees, with implications for constraints on allele size. Molecular Biology and Evolution 12: 594–603.

    PubMed  CAS  Google Scholar 

  • Gelman, A., and D. B. Rubin. 1992. Inference from iterative simulation using multiple sequences. Statistical Science 7: 457–511.

    Article  Google Scholar 

  • Gelman, A., J. B. Carlin, H. S. Stern, and D. B. Rubin. 1995. Bayesian Data Analysis. Chapman and Hall, New York.

    Google Scholar 

  • Geyer, C. J., and E. A Thompson. 1995. Annealing Markov Chain Monte Carlo with applications to ancestral Inference. Journal of the American Statistical Association 90: 909–920.

    Article  Google Scholar 

  • Gibbons, A 1995. Out of Africa-at last? Science 267: 1272–1273.

    Article  PubMed  Google Scholar 

  • Goel, P. K. 1983. Information measures and Bayesian hierarchical models. Journal of the American Statistical Association 78, 408–410.

    Article  Google Scholar 

  • Goel, P. K., and M. H. DeGroot. 1981. Information about hyperparameters in hierarchical models. Journal of the American Statistical Association 76: 140–147.

    Google Scholar 

  • Goldstein, D. B., R. A. Ruiz-Linares, L. L. Cavalli-Sforza, and M. W. Feldman. 1995a. An evaluation of genetic distances for use with microsatellite loci. Genetics 139: 463–471.

    PubMed  CAS  Google Scholar 

  • Goldstein, D. B., A Ruiz Linares, L. L. Cavalli-Sforza, and M. W. Feldman. 1995b. Genetic absolute dating based on microsatellites and the origin of modem humans. Proceedings of the National Academy of Sciences of the U.S.A 92: 6723–6727.

    Article  CAS  Google Scholar 

  • Goldstein, D. B., and A G. Clark. 1995. Microsatellite variation in North American populations of Drosophila melanogaster. Nucleic Acids Research 23: 3882–3886.

    Article  PubMed  CAS  Google Scholar 

  • Goldstein, D. B., L. A Zhivotovsky, K. Nayar, A Ruiz Linares, L. L. Cavalli-Sforza, and M. W. Feldman. 1996. Statistical properties of the variation at linked microsatellite loci: implications for the history of human Y chromosomes. Molecular Biology and Evolution 13: 1213–1218.

    Article  PubMed  CAS  Google Scholar 

  • Griffiths, R. C., and S. Tavare. 1994. Ancestral inference in population genetics. Statistical Science 9: 307–319.

    Article  Google Scholar 

  • Horai, S., K. Hayasaka, R. Kondo, K. Tsugane, and N. Takahata. 1995. Recent African origin of modern humans revealed by complete sequences of hominoid mitochondrial DNAs. Proceedings of the National Academy of Sciences of the U.S.A. 92: 532–536.

    Article  CAS  Google Scholar 

  • Jorde, L. B., M. J. Bamshad, W. S. Watkins, R. Zenger, A. E. Fraley, P. A. Krakowiak, R. Carpenter, H. Soodyall, T. Jenkins, and A. R. Rogers. 1995. Origins and affinities of modern humans: a comparison of mitochondrial and nuclear genetic data. American Journal of Human Genetics 57: 523–538.

    PubMed  CAS  Google Scholar 

  • Li, S., D. K. Pearl, and H. Doss. 1996. Phylogenetic tree construction using Markov Chain Monte Carlo. The Ohio State University, Dep. of Statistics, Technical Report N.583, Columbus.

    Google Scholar 

  • Mau, B., M. A. Newton, and B. Larget. 1996. Bayesian Phylogenetic Inference via Markov Chain Monte Carlo Methods. Madison: University of Wisconsin-Madison, Dep. of Statistics. Ftp address: ftp.stat. wisc.edu/pub/newton/tr961.ps

    Google Scholar 

  • Moran, P. A. P. 1975. Wandering Distributions and the electrophoretic profile. Theoretical Population Biology 8: 318–330.

    Article  PubMed  CAS  Google Scholar 

  • Nauta, M. J., and F. J. Weissing. 1996. Constraints on allele size at microsatellite loci: implications for genetic differentiation. Genetics 143: 1021–1032.

    PubMed  CAS  Google Scholar 

  • Nei, M., and N. Takezaki. 1996. The root of phylogenetic tree of human populations. Molecular Biology and Evolution 13: 170–177.

    Article  PubMed  CAS  Google Scholar 

  • Nei, M. 1995. Genetic support for the out-of-Africa theory of human evolution. Proceedings of the National Academy of Sciences of the U.S.A. 92: 6720–6722.

    Article  CAS  Google Scholar 

  • O’Hagan, A. 1994. Bayesian Inference. Edward Arnold, London.

    Google Scholar 

  • Ohta, T., and M. Kimura. 1973. A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a finite population. Genetical Research 22: 201–204.

    Article  Google Scholar 

  • Plaschke, J., M. W. Ganal, and M. S. Roder. 1995. Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theoretical Applied Genetics 91: 1001–1007.

    CAS  Google Scholar 

  • Pritchard, J. K., and M. W. Feldman. 1996. Statistics for microsatellite variation based on coalescence. Theoretical Population Biology 50: 325–344.

    Article  PubMed  CAS  Google Scholar 

  • Rousset, F. 1996. Equilibrium values of measures of population subdivision for stepwise mutation process. Genetics 142: 1357–1362.

    PubMed  CAS  Google Scholar 

  • Saitou, N., and M. Nei. 1987 The neighbor-joining method: a new method for reconstructing phylog melk trees. Molecular Biology and Evolution 4: 406–425.

    PubMed  CAS  Google Scholar 

  • Shriver, M. D., L. Jin, R. Chakraborty, and E. Boerwinkle. 1993. VNTR allele frequency distribution under the stepwise mutation model: a computer simulation approach. Genetics 134: 983–993.

    PubMed  CAS  Google Scholar 

  • Shriver, M. D., L. Jin, E. Boerwinkle, R. Deka, R. E. Ferrell, and R. Chakraborty. 1995. A novel measure of genetic distance for highly polymorphic tandem repeat loci. Molecular Biology and Evolution 12: 914–920.

    PubMed  CAS  Google Scholar 

  • Sinsheimer, J. S., J. A. Lake, and R. J. A. Little. 1996. Bayesian hypothesis testing of four-taxon topologies using molecular sequence data. Biometrics 52: 193–210.

    Article  PubMed  CAS  Google Scholar 

  • Silverman, B. W. 1992. Density Estimation for Statistics and Data Analysis. Chapman & Hall, New York.

    Google Scholar 

  • Slatkin, M. 1995. A measure of population subdivision based on microsatellite allele frequencies. Genetics 139: 457–462.

    PubMed  CAS  Google Scholar 

  • Stefanini, F. M. 1997. Metodologia Bayesiana gerarchica ed informazione evolutiva in loci genetici micrisatellite. PhD Thesis, Department of Statistics, University of Florence, Italy.

    Google Scholar 

  • Tajima, F. 1993. Measurement of DNA polymorphism. In N. Takahata and A. G. Clark, eds., Mechanisms of Molecular Evolution, Sinauer Associates Inc Sunderland, Massachusetts, pp. 37–59.

    Google Scholar 

  • Valdes, A. M., M. Slatkin, and N. B. Freimer. 1993. Allele frequencies at microsatellite loci: the stepwise mutation model revisited. Genetics 133: 737–749.

    PubMed  CAS  Google Scholar 

  • Venables, W. N., and B. D. Ripley. 1994 Modern Applied Statistics with S-Plus. Springer-Verlag, New York.

    Google Scholar 

  • Weber, J. L., and C. Wong. 1993. Mutation of human short tandem repeats. Human Molecular Genetics 2: 1123–1128.

    Article  PubMed  CAS  Google Scholar 

  • Yang, Z., and B. Rannala. 1997. Bayesian Phylogenetic Inference using DNA sequences: a Markov Chain Monte Carlo Method. Molecular Evolution and Biology 14: 717–724.

    Article  CAS  Google Scholar 

  • Zhivotovsky, L. A., and M. W. Feldman. 1995. Microsatellite variability and genetic distances. Proceedings of the National Academy of Sciences of the U.S.A. 92: 11549–11552.

    Article  CAS  Google Scholar 

  • Zhivotovsky, L. A., M. W. Feldman, and S. A. Grishechkin. 1997. Microsatellite evolution with biased mutations. Molecular Biology and Evolution 14: 926–933.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Stefanini, F.M., Feldman, M.W. (1999). Microsatellite Loci and the Origin of Modern Humans: A Bayesian Analysis. In: Wasser, S.P. (eds) Evolutionary Theory and Processes: Modern Perspectives. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4830-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4830-6_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6025-7

  • Online ISBN: 978-94-011-4830-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics