Skip to main content

Using Gene Trees to Infer Species from Testable Null Hypothesis: Cohesion Species in the Spalax ehrenbergi Complex

  • Chapter
Evolutionary Theory and Processes: Modern Perspectives

Abstract

The cohesion species concept defines a species as an evolutionary lineage whose boundaries arose from the forces that create reproductive communities. Such forces are collectively called cohesion mechanisms and consist of two main subtypes: genetic exchangeablity and ecological interchangeablity. To make this definition operational, populations that behaved as separate evolutionary lineages are first identified. A method is reviewed for inferring lineages using explicit statistical criteria from geographical overlays upon gene trees and is illustrated with data from the Spalax ehrenbergi superspecies complex. This step infers three statistically significant lineages of mole rats and several range expansion events within this group. Once lineages have been identified, the next step is to use the cohesion mechanisms to identify candidate traits that should contribute to genetic exchangeability and/or ecological interchangeability. The cohesion species are then identified by performing overlays upon gene trees to identify significant transitions in the candidate traits. Cohesion species are recognized only when statistically significant genetic/ecological transitions occur that are concordant with the lineages defined earlier. All three mole rat lineages reject the null hypotheses of both genetic exchangeability and ecological interchangeability among the lineages, and hence there is statistically significant evidence for three cohesion species in this complex. More species could exist, and the testing procedure provides detailed guidance for future research on species status in these mole rats. This data-rich method of recognizing species automatically generates much information about the biogeography, population structure, historical events, and ecology and/or reproductive biology of the group under study. This information in turn provides much insight into the process of speciation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, E. 1953. Introgressive hybridization. Biological Reviews 28: 280–307.

    Article  Google Scholar 

  • Arieli, R., M. Arieli, G. Heth, and E. Nevo. 1984. Adaptive respiratory variation in 4 chromosomal species of mole rats. Experientia 40: 512–514.

    Article  PubMed  CAS  Google Scholar 

  • Arieli, R., G. Heth, E. Nevo, and D. Hoch. 1986. Hematocrit and hemoglobin concentration in four chromosomal species and some isolated populations of actively speciating subterranean mole rats in Israel. Experientia 42: 441–443.

    Article  PubMed  CAS  Google Scholar 

  • Arieli, R., G. Heth, E. Nevo, Y. Zamir, and O. Neutra. 1986. Adaptive heart and breathing frequencies in 4 ecologically differentiating chromosomal species of mole rats in Israel. Experientia 42: 131–133.

    Article  Google Scholar 

  • Avise, J. C. 1994. Molecular Markers, Natural History and Evolution. Chapman and Hall, New York.

    Book  Google Scholar 

  • Baum, D. A., and A. Larson. 1991. Adaptation reviewed: a phylogenetic methodology for studying character macroevolution. Systematic Zoology 40: 1–18.

    Article  Google Scholar 

  • Baum, D. A., and K. L. Shaw. 1995. Genealogical perspectives on the species problem. In P. H. Hoch, and A. G. Stevenson, eds., Experimental and Molecular Approaches to Plant Biosystematics. Missouri Botanical Garden, St. Louis, pp. 289–303.

    Google Scholar 

  • Cracraft, J. 1989. Species as entities of biological theory. In M. Ruse, ed., What the Philosophy of Biology is. Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 31–52.

    Chapter  Google Scholar 

  • Felsenstein, J. 1985. Phytogenies and the comparative method. American Naturalist 125: 1–15.

    Article  Google Scholar 

  • Haim, A., G. Heth, Z. Avnon, and E. Nevo. 1984. Adaptive physiological variation in nonshivering thermogenesis and its significance in speciation. Journal of Comparative Physiology B 154: 145–147.

    Article  Google Scholar 

  • Hammer, M. F., T. Karafet, A. Rasanayagam, E. T. Wood, T. K. Altheide, T. Jenkins, R. C. Griffiths, A. R. Templeton, and S. L. Zegura. 1998. Out of Africa and back again: nested cladistic analysis of human Y chromosome variation. Molecular Biology and Evolution, in press.

    Google Scholar 

  • Hey, J. 1994. Bridging phylogenetics and population genetics with gene tree models. In B. Schierwater, B. Streit, G. P. Wagner, and R. DeSalle, eds., Molecular Ecology and Evolution: Approaches and Applications. Birkhauser Verlag, Basel, pp. 435–449.

    Google Scholar 

  • Hilton, H., and J. Hey. 1997. A multi locus view of speciation in the Drosophila virilis species group reveals complex histories and taxonomic conflicts. Genetical Research 70: 185–194.

    Article  CAS  Google Scholar 

  • Hudson, R. R. 1990. Gene genealogies and the coalescent process. Oxford Surveys in Evolutionary Biology 7: 1–44.

    Google Scholar 

  • Mayr, E. 1970. Populations, Species, and Evolution. The Belknap Press of Harvard University Press, Cambridge, Massachusetts.

    Google Scholar 

  • Mayr, E. 1992. A local flora and the biological species concept. American Journal of Botany 79: 222–238.

    Article  Google Scholar 

  • Neter, J., W. Wasserman, and M. H. Kutner. 1985. Applied Linear Statistical Models. Richard D. Irwin, Inc., Homewood, Illinois.

    Google Scholar 

  • Nevo, E. 1985. Speciation in action and adaptation in subterranean mole rats: patterns and theory. Bolletino Zoologico 52: 65–95.

    Article  Google Scholar 

  • Nevo, E. 1993. Mode, tempo and pattern of evolution in the subterranean mole rats of the Spalax ehrenbergi superspecies in the Quaternary of Israel. Quaternary International 19: 13–19.

    Article  Google Scholar 

  • Nevo, E., G. Heth, A. Beiles, and E. Frankenberg. 1987. Geographic dialects in blind mole rats: role of vocal communication in active speciation. Proceedings of the National Academy of Sciences of the U.S.A. 84: 3312–3315.

    Article  CAS  Google Scholar 

  • Nevo, E., R. L. Honeycutt, H. Yonekawa, K. Nelson, and N. Hanzawa. 1993. Mitochondrial DNA polymorphisms in subterranean mole-rats of the Spalax ehrenbergi superspecies in Israel, and its peripheral isolates. Molecular Biology and Evolution 10: 590–604.

    PubMed  CAS  Google Scholar 

  • Paterson, H. E. H. 1984. The recognition concept of species. South African Journal of Science 80: 312–318.

    Google Scholar 

  • Sokal, R. R., and J. T. Crovello. 1970. The biological species concept: a critical evaluation. American Naturalist 104: 127–153.

    Article  Google Scholar 

  • Templeton, A. R. 1989. The meaning of species and speciation: A genetic perspective. In D. Otte and J. A. Endler, eds., Speciation and its Consequences. Sinauer, Sunderland, Massachusetts, pp. 3–27.

    Google Scholar 

  • Templeton, A. R. 1991. Genetics and conservation biology. In A. Seitz, and V. Loeschcke, eds., Species Conservation: a Population-Biological Approach. Birkhauser Verlag, Basel, pp. 15–29.

    Google Scholar 

  • Templeton, A. R. 1993. The “Eve” hypothesis: a genetic critique and reanalysis. Amererican Anthropologist 95: 51–72.

    Article  Google Scholar 

  • Templeton, A. R. 1994. The role of molecular genetics in speciation studies. In B. Schierwater, B. Streit, G. P. Wagner, and R. DeSalle, eds., Molecular Ecology and Evolution: Approaches and Applications. Birkhauser-Verlag, Basel, pp. 455–477.

    Google Scholar 

  • Templeton, A. R. 1995. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping or DNA sequencing. V. Analysis of case/control sampling designs: Alzheimer’s disease and the Apoprotein E locus. Genetics 140: 403–409.

    PubMed  CAS  Google Scholar 

  • Templeton, A. R. 1997. Testing the out of Africa replacement hypothesis with mitochondrial DNA data. In G. A. Clark and C. M. Willermet, eds. Conceptual Issues in Modern Human Origins Research. Aldine de Gruyter, New York, pp. 329–360.

    Google Scholar 

  • Templeton, A. R. 1998a. Species and speciation: geography, population structure, ecology, and gene trees. D. J. Howard, and S. H. Berlocher, eds. Endless Forms: Species and Speciation. Oxford University Press, Oxford.

    Google Scholar 

  • Templeton, A. R. 1998b. Nested clade analyses of phylogeographic data: testing hypotheses about gene flow and population history. Molecular Ecology, in press.

    Google Scholar 

  • Templeton, A. R., E. Boerwinkle, and C. F. Sing. 1987. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping. I. Basic theory and an analysis of alcohol dehydrogenase activity in Drosophila. Genetics 117: 343–351.

    PubMed  CAS  Google Scholar 

  • Templeton, A. R. and N. J. Georgiadis. 1996. A landscape approach to conservation genetics: conserving evolutionary processes in the African Bovidae. In J. C. Avise, and J. L. Hamrick, eds. Conservation Genetics: Case Histories from Nature. Chapman and Hall, New York, pp. 398–430.

    Google Scholar 

  • Templeton, A. R., E. Routman, and C. Phillips. 1995. Separating population structure from population history: a cladistic analysis of the geographical distribution of mitochondrial DNA haplotypes in the Tiger Salamander, Ambystoma tigrinum. Genetics 140: 767–782.

    PubMed  CAS  Google Scholar 

  • Templeton, A. R., and C. F. Sing. 1993. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping. IV. Nested analyses with cladogram uncertainty and recombination. Genetics 134: 659–669.

    PubMed  CAS  Google Scholar 

  • Wahrman, J., C. Richler, R. Gamperl, and E. Nevo. 1985. Revisiting Spalax: Mitotic and meiotic chromosome variability. Israel Journal of Zoology 33: 15–38.

    Google Scholar 

  • Whittemore, A. T. 1993. Species concepts: a reply to Ernst Mayr. Taxon 42: 573–583.

    Article  Google Scholar 

  • Whittemore, A. T., and B. A. Schaal. 1991. Interspecific gene flow in sympatric oaks. Proceedings of the National Academy of Sciences of the U.S.A. 88: 2540–2544.

    Article  CAS  Google Scholar 

  • Wiley, E. O., and R. L. Mayden. 1985. Species and speciation in phylogenetic systematics, with examples from the North American fish fauna. Annals of the Missouri Botanical Garden 72: 596–635.

    Article  Google Scholar 

  • Wu, C. I. 1992. Gene trees, species trees and the segregation of ancestral alleles — reply. Genetics 131: 513.

    Google Scholar 

  • Zhu, Z., V. Vincek, F. Figueroa, C. Schonbach, and J. Klein. 1991. MHC-DRB genes of the pigtail macaque (Macaca nemestrina): implications for the evolution of human DRB genes. Molecular Biology and Evolution 8: 563–578.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Templeton, A.R. (1999). Using Gene Trees to Infer Species from Testable Null Hypothesis: Cohesion Species in the Spalax ehrenbergi Complex. In: Wasser, S.P. (eds) Evolutionary Theory and Processes: Modern Perspectives. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4830-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4830-6_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6025-7

  • Online ISBN: 978-94-011-4830-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics