Skip to main content

Molecular Clocks and the Origin of Animals

  • Chapter
  • 206 Accesses

Abstract

Abundant fossils from the major animal phyla appear rather suddenly in Cambrian deposits, starting 544 million years ago. Many paleontologists hold that this fossil “explosion” reflects that most animal phyla originated in the late Neoproterozoic, during the 100-150 million years preceding the Cambrian. Others claim that their origin is as much as twice as old, dating to more than one billion years ago. Our analysis of 18 protein-encoding genes yields estimates of 602-736 million years ago for the divergence between protostomes (annelids, arthropods, and mollusks) and deuterostomes (echinoderms and chordates). Estimates of the divergence between echinoderms and chordates range 560-628 million years ago. These results support a late Neoproterozoic origin of the major animal phyla and are consistent with the recent discovery of 570 million-years-old spongae and animal embryos.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ayala, F. J. 1986. On the virtues and pitfalls of the molecular evolutionary dock. Journal of Heredity 77: 226–235.

    PubMed  CAS  Google Scholar 

  • Ayala, F. J. 1997. Vagaries of the molecular dock. Proceedings of the National Academy of Sciences of the U.S.A 94: 7776–7783.

    Article  CAS  Google Scholar 

  • Ayala, F. J., E. Barrio, and J. Kwiatowski. 1996. Molecular clock or erratic evolution? A tale of two genes. Proceedings of the National Academy of Sciences of the USA 93: 11729–11734.

    Article  PubMed  CAS  Google Scholar 

  • Ayala, F. J., A Rzhetsky, and F. J. Ayala. 1998. Origin of the metazoan phyla: molecular clocks confirm paleontological estimates. Proceedings of the National Academy of Sdenoes of the U.S.A 95: 606–611.

    Article  CAS  Google Scholar 

  • Barrio, E., and F. J. Ayala. 1997. Evolution of the Drosophila obscura species group inferred from the Gpdh and Sod genes. Molecular Phylogenetics and Evolution 7: 79–93.

    Article  PubMed  CAS  Google Scholar 

  • Brown, R. H., M. Richardson, D. Boulter, J. A.M. Ramshaw, and R.P.S. Jeffes. 1972. The amino add sequence of cytochrome c from Helix aspersa Muller (garden snail). Biochemical Journal 128: 971–974.

    PubMed  CAS  Google Scholar 

  • Conway Morris, S. 1993. The fossil record and the early evolution of the Metazoa. Nature 361: 219–225.

    Article  Google Scholar 

  • Conway Morris, S. 1997. Molecular clocks: defusingthe Cambrian ‘explosion’? Current Biology 7: R71–R74.

    Article  PubMed  CAS  Google Scholar 

  • Dayhoff, M. O. 1978. Atlas of Protein Sequence and Structure, Vol. 5, Suppl. 3. National Biomedical Research Foundation, Washington, D.C.

    Google Scholar 

  • Dohzhansky, T., F. J. Ayala, G. L. Stebbins, and J. W. Valentine. 1977. Evolution. Freeman, San Francisco.

    Google Scholar 

  • Doolittle, W. F. 1997. Fun with genealogy. Proceedings of the National Academy of Sdenoes of the U.S.A 94: 12751–12753.

    Article  CAS  Google Scholar 

  • Doolittle, R. F., D.-F. Feng, S. Tsang, G. Cho, and E. Little. 1996. Determining divergence times of the major kingdoms of living organisms with a protein dock. Science 274: 1751–1753.

    Article  PubMed  CAS  Google Scholar 

  • Eemisse, D. J., J. S. Albert, andF. E. Anderson. 1992. Annelida and arthropoda are not sister taxa: A phylogenetic analysis of spiralian metazoan morphology. Systematic Biology 41: 305–330.

    Google Scholar 

  • Erwin, D. H. 1993. The origin of metazoan development: a paleobiological perspective. Biological Journal of the Linnean Sodety 50: 255–274.

    Article  Google Scholar 

  • Feng, D.-F., G. Cho, and R.F. Doolittle. 1997. Detennining divergence times with a protein clock: Update and reevaluation. Proceedings of the National Academy of Sciences of the U.S.A. 94: 13028–13033.

    Article  CAS  Google Scholar 

  • Gillspie, J. H. 1991. The Causes of Molecular Evolution. Oxfod University Press, New Yak, and Oxford

    Google Scholar 

  • Glaessner, M. F. 1984. The Dawn of Animal Lfe. Cambridge University Press, Cambridge.

    Google Scholar 

  • Golding, G. B. 1983. Estimates of DNA and protein sequence divergence: an examination of some assumptions. Molecular Biology and Evolution 1: 125–142.

    PubMed  CAS  Google Scholar 

  • Goukj, S. J. 1989. Wonderful Life. Norton, New York.

    Google Scholar 

  • Grotzinger, J. P., S. A Bowring, B. Z. Savior, and A J. Kaufman 1995. Biostratigraphic and geochronologic constraints on early animal evolution Sdence 270: 598–604.

    CAS  Google Scholar 

  • Hedges, S. B.,P. H. Parker, C. G. Sibley, and S. Kumar. 1996. Continental breakup and the ordinal diversification of birds and mammals. Nature 381: 226–229.

    Article  PubMed  CAS  Google Scholar 

  • Jin, L., and M. Nd. 1990. Limitations of the evolutionary parsimony method of phylogenetic analysis. Molecular Biology and Evolution 7: 82–102.

    PubMed  CAS  Google Scholar 

  • Kendall, M. B. 1956. The Advanced Theory of Statistics. Hafner, New York.

    Google Scholar 

  • Kimura, M., and T. Ohta. 1972. Population genetics, molecular biometry, and evolution In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probabilities, Vol. 5. pp. 43–68.

    Google Scholar 

  • Koonin, E. V, and A R. Mushegian 1996. Complete genome sequences of cellular life forms: glimpses of theoretical evolutionary genomics. Current Opinion in Genetics and Development 6: 757–762.

    Article  PubMed  CAS  Google Scholar 

  • Kwiatowski, J., D. Skarecky, K. Bailey, and F. J. Ayala. 1994. Phylogeny of Drosophila and related genera inferred from the nucleotide sequence of the Cu, Zn Sod gene. Journal of Molecular Evolution 38: 443–353.

    Article  PubMed  CAS  Google Scholar 

  • Kwiatowski, J., M. Krawczyk, M. Jaworski, D. Skarecky, and F. J. Ayala. 1997. Erratic evolution of glycerol-3-phosphate dehydrogenase in Drosophila, Chymomyza, and Ceratitis. Journal of Molecular Evolution 44: 9–22.

    Article  PubMed  CAS  Google Scholar 

  • Li, C.-W., J.-Y. Chen, and T.-E. Hua. 1998. Precambrian sponges with cellular structures. Sdence 279: 879–882.

    Article  CAS  Google Scholar 

  • Lipps, J. H., and P. W. Signor, eds. 1992. Origin and Early Evolution of Metazoa. Plenum, New York.

    Google Scholar 

  • Nei, M., J. C. Stephens, and N. Sahou. 1985. Methods for computing the standard errors of branching points in an evolutionary tree and their application to molecular data from humans and apes. Molecular Biology and Evolution 2: 66–85.

    PubMed  CAS  Google Scholar 

  • Nei, M., X Gu, and T. Sitnikova. 1997. Evolution by the birth-aixMeath process m multigene immune system. Proceedings of the National Academy of Sdences of the U.S.A 94: 7799–7806.

    Article  CAS  Google Scholar 

  • Ota, T., and M. Nei. 1994. Divergent evolution and evolution by the birth-and-death process in the Immunoglobulin VH gene family. Molecular Biology and Evolution 11: 469–482.

    PubMed  CAS  Google Scholar 

  • Saitou, N, and M Nei. 1987. The neighbor-joining method: a new method for reconstructing phylognetic trees. Molecular Biology and Evolution 4: 406–425.

    PubMed  CAS  Google Scholar 

  • Schopf, J. W.,and C. Klein, eds. 1992. The Proterozoic Biosphere. A Kiultidisciplinary Study. Cambridge University Press, Cambridge.

    Google Scholar 

  • Takahata, N. 1991. Overdispersed molecular clock at the major histocompatibility complex loci. Proceeding of the Royal Society London B. Biological Sciences 243: 13–18.

    PubMed  CAS  Google Scholar 

  • Takezaki, N., A. Rzhetsky, and M Nei. 1995. Phylogenetic test of the molecular clock and linearized trees. Molecular Biology and Evolution 12: 823–833.

    PubMed  CAS  Google Scholar 

  • Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22: 4673–4680.

    Article  PubMed  CAS  Google Scholar 

  • Valentine, J. W. 1973. Coekxnate superphyla. Systematic Zoology 22: 97–102.

    Article  Google Scholar 

  • Valentine, J. W. 1977. General patterns of Metazoan evolution. In. A. Hallam, ed., Patterns of Evolution. Elsevier, Amsterdam, pp. 27–58.

    Google Scholar 

  • Valentine, J. W. 1989. Bilaterians of the Precambrian-Cambrian transition and the annelid-arthropod relationship. Proceedings of the National Academy of Sciences of the USA 86: 2272–2275.

    Article  PubMed  CAS  Google Scholar 

  • Valentine, J. W., S. M. Awramik, P. W. Signor, and P. M. Sadler. 1991. The biological explosion at the Precambrian-Cambrian boundary. Evolutionary Biology 25: 279–356.

    Google Scholar 

  • Wray, G. A., J. S. Levinton, and L. H. Shapiro. 1996. Molecular evidence for deep precambrian divergences among Metazoan phyla. Science 274: 568–573.

    Article  CAS  Google Scholar 

  • Xiao, S., Y. Zhang, and A. H. Knoll. 1998. Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature 391: 553–558.

    Article  CAS  Google Scholar 

  • Yang, Z. 1993. Maximum-likelihood estimation of phytogeny from DNA sequences when substitution rates differ over sites. Molecular Biology and Evolution 10: 1396–1402.

    PubMed  CAS  Google Scholar 

  • Zuckerkandl, E., and L. Pauling. 1965. Evolutionary divergence and convergence in proteins. In V. Bryson and H. J. Vogel, eds., Evolving Genes and Proteins. Academic Press, New York, pp. 97–166.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ayala, F.J., Rzhetsky, A., Ayala, F.J. (1999). Molecular Clocks and the Origin of Animals. In: Wasser, S.P. (eds) Evolutionary Theory and Processes: Modern Perspectives. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4830-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4830-6_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6025-7

  • Online ISBN: 978-94-011-4830-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics