Skip to main content

Constraints on the FIP Mechanisms from Solar Wind Abundance Data

  • Conference paper
Solar Composition and its Evolution — from Core to Corona

Part of the book series: Space Sciences Series of ISSI ((SSSI,volume 5))

Abstract

In the slow solar wind, elements with (first) ionisation potential (FIP) between ∼10 eV and 22 eV are depleted by a factor of about 4 relative to their abundances in the Outer Convective Zone (OCZ), and helium (FIP = 24.5 eV) is further depleted by a factor of ∼1.8. This depletion, called the FIP effect, is much less pronounced in the high speed streams coming out of coronal holes. The systematics of element depletion suggests that the FIP effect is produced at a temperature ∼104 K and that it is controlled by the time of ionisation at the solar surface. At the boundary of the polar coronal holes, the transition from a strong to a weak FIP effect is relatively sharp and coincides with the change in coronal electron temperature, indicating a profound change in coronal as well as chromospheric properties at this boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anders, E., and Grevesse, N.: 1989, ‘Abundances of the Elements: Meteoritic and Solar’, Geochim. Cosmochim. Acta 53, 197–214.

    Article  ADS  Google Scholar 

  • Bame, S.J., Asbridge, J.R., Feldman, W.C., Montgomery, M.D., and Kearney, P.D.: 1975, ‘Solar Wind Heavy Ion Abundances’, Sol. Phys. 43, 463–473.

    Article  ADS  Google Scholar 

  • Bochsler, P., Geiss, J., and Kunz, S.: 1986, ‘Abundances of Carbon, Oxygen and Neon in the Solar Wind During the Period from August 1978 to June 1982’, Sol. Phys. 102, 177.

    Article  ADS  Google Scholar 

  • Bochsler, P.: 1987, ‘Solar Wind Ion Composition’, Physica Scripta T18, 55.

    Article  ADS  Google Scholar 

  • Bochsler, P., and Geiss, J.: 1989, ‘Solar System Plasma Physics’, in Solar System Plasma Physics, Geophysical Monograph 54, (eds. Waite, J.H.Jr., Burch, J.L., and Moore, R.L.), 133–141.

    Google Scholar 

  • Breneman, H.H., and Stone, E.C.: 1985, ‘Solar Coronal and Photospheric Abundances from SEP Measurements’, ApJ 299, L57–L61.

    Article  ADS  Google Scholar 

  • Cerutti, H.: 1974, Die Bestimmung des Argons im Sonnenwind aus Messungen an den Apollo-SWC-Folien, Ph.D. Thesis, University of Bern.

    Google Scholar 

  • Coplan, M.A., Ogilvie, K.W., Bochsler, P., and Geiss, J.: 1984, ‘Interpretation of 3He Abundance Variations in the Solar Wind’, Sol. Phys. 93, 415–434.

    Article  ADS  Google Scholar 

  • Feldman, U.: 1998, ‘FIP Effect In The Solar Upper Atmosphere: Spectroscopic Results’, Space Sci. Rev., this volume.

    Google Scholar 

  • Galvin, A.B., Gloeckler, G., Ipavich, F.M., Shafer, C.M., Geiss, J., and Ogilvie, K.W.: 1993, ‘Solar Wind Composition Measurements by the Ulysses SWICS Experiment During Transient Solar Wind Flows’, Adv. Space Res. 13, (6)75–(6)78.

    Article  ADS  Google Scholar 

  • Garrard, T.L., and Stone, E.C.: 1993, ‘New SEP-Based Solar Abundances’, in Proc. 23rd Int. Cosmic Ray Conf. 3, 384.

    Google Scholar 

  • Geiss, J., Eberhardt, P., Bühler, F., Meister J., and Signer P.: 1970, ‘Apollo 11 and 12 Solar Wind Composition Experiments: Fluxes of He and Ne Isotopes’, Geophys. Res. 75, 5972–5979.

    Article  ADS  Google Scholar 

  • Geiss, J., Bühler, F., Cerutti, H., Eberhardt, P., Filleux, Ch.: 1972, ‘Solar Wind Composition Experiment’, Apollo 16 Prel. Sci. Report, Sect. 14, NASA SP-315, 3375–3398.

    Google Scholar 

  • Geiss, J.: 1982, ‘Processes Affecting Abundances in the Solar Wind’, Space Sci. Rev. 33, 201.

    Article  ADS  Google Scholar 

  • Geiss, J., and Bochsler, P.: 1985, ‘Ion Composition in the Solar Wind in Relation to Solar Abundances’, in Proc. Rapports Isotopiques dans le Système Solaire, Paris: Cepadues-Editions, 213–228.

    Google Scholar 

  • Geiss, J., and Bochsler, P.: 1986, ‘Solar Wind Composition and What We Expect to Learn From Out-of-Ecliptic Measurements’, in The Sun and the Heliosphere in Three Dimensions (ed. Marsden, R.G.), Dordrecht: Reidel, 173–186.

    Chapter  Google Scholar 

  • Geiss, J., and Bürgi, A.: 1986, ‘Diffusion and Thermal Diffusion in Partially Ionized Gases in the Atmospheres of the Sun and Planets’, Astron. Astrophys. 159, 1–15.

    ADS  MATH  Google Scholar 

  • Geiss, J., and Bürgi, A.: 1987, ‘Diffusion and Thermal Diffusion in Partially Ionized Gases: The Case of Unequal Temperatures’, Astron. Astrophys. 178, 286–291.

    ADS  Google Scholar 

  • Geiss, J., Ogilvie, K.W., von Steiger, R., et al.: 1992, ‘Ions with Low Charges in the Solar Wind as Measured by SWICS on Board Ulysses’, in Solar Wind Seven (eds. Marsch, E., and Schwenn, R.) COSPAR Coll. Ser. Vol. 3, 341–348.

    Google Scholar 

  • Geiss, J., Gloeckler, G., and von Steiger, R.: 1994, ‘Solar and Heliospheric Processes from Solar Wind Composition Measurements’, Phil. Trans. R. Soc. Lond. A 349, 213–226.

    Article  ADS  Google Scholar 

  • Geiss, J., Gloeckler G., and von Steiger R.: 1995a, ‘Origin of the Solar Wind From Composition Data’, Space Sci. Rev. 72, 49.

    Article  ADS  Google Scholar 

  • Geiss, J., Gloeckler, G., von Steiger, R., et al.: 1995b, ‘The Southern High Speed Stream: Results from the SWICS Instrument on Ulysses’, Science 268, 1033–1036.

    Article  ADS  Google Scholar 

  • Gloeckler, G., Ipavich, F.M., Hamilton, D.C., Wilken, B., and Kremser, G.: 1989, ‘Heavy Ion Abundances in Coronal Hole Solar Wind Flows’, EOS Trans. AGU 70, 424.

    Google Scholar 

  • Gloeckler, G. et al.: 1992, ‘The Solar Wind Ion Composition Spectrometer’, Astron. Astrophys. Sup-pi Ser. 92, 267–289.

    ADS  Google Scholar 

  • Hénoux, J.C.: 1998, ‘FIP Fractionation: Theory’, Space Sci. Rev., this volume.

    Google Scholar 

  • Ipavich, F.M., Galvin, A.B., Geiss, J., Ogilvie, K.W., and Gliem, F.: 1992, ‘Solar Wind Iron and Oxygen Charge States and Relative Abundances Measured by SWICS on Ulysses’, in Solar Wind Seven (eds. Marsch, E., and Schwenn, R.), COSPAR Coll. Ser. Vol. 3 Goslar, Germany, Pergamon Press, 369–374.

    Google Scholar 

  • Joos, R.: 1989, Zusammensetzung des Sonnenwindplasmas; Eichung des Sonnenwindmassenspek-trometers SWICS, Ph.D. Thesis, University of Bern.

    Google Scholar 

  • Judge, Ph., and Peter, H.: 1998, ‘The Structure of the Chromosphere’, Space Sci. Rev., this volume.

    Google Scholar 

  • Ko, Y.-K., Fisk, L.A., Geiss, J., Gloeckler, G., and Guhathakurta, M.: 1997, ‘An Empirical Study of the Electron Temperature and Heavy Ion Velocities in the South Polar Coronal Hole’, Solar Physics 171, 345–365.

    Article  ADS  Google Scholar 

  • Marsch, E., von Steiger, R., and Bochsler, P.: 1995, ‘Element Fractionation by Diffusion in the Solar Chromosphere’, Astron. Astrophys. 301, 261.

    ADS  Google Scholar 

  • McKenzie, J.F., Sukhorukova, G.V., and Axford, W.I.: 1998, ‘Structure of a Photoionization Layer in the Solar Chromosphere’, Astron. Astrophys 332, 367–373.

    ADS  Google Scholar 

  • Meyer, J.-P.: 1981, ‘A Tentative Ordering of all Available Solar Energetic Particles Abundance Observations’, in 17th Intern. Cosmic Ray Conf., Paris 3, 145.

    Google Scholar 

  • Meyer, J.-P: 1985, ‘Solar-Stellar Outer Atmospheres and Energetic Particles, and Galactic Cosmic Rays’, ApJ Suppl 57, 151.

    Article  ADS  Google Scholar 

  • Meyer, J.-P.: 1993, ‘Element Fractionation at Work in the Solar Atmosphere’, In Origin and Evolution of the Elements, (eds. Prantzos, N., Vangioni-Flam, E., and Cassé, M.), Cambridge Univ. Press, 26–62.

    Google Scholar 

  • Neugebauer, M.: 1981, ‘Observations of Solar Wind Helium’, Fundamentals of Cosmic Physics 1, 131–199.

    ADS  Google Scholar 

  • Ogilvie, K.W., Coplan, M.A., and Geiss, J.: 1992, ‘Solar Wind Composition From Sector Boundary Crossings and Coronal Mass Ejections’, in Solar Wind Seven (eds. Marsch, E., and Schwenn, R.), 399–403.

    Google Scholar 

  • Pérez Hernández, F., and Christensen-Dalsgaard, J.: 1994, ‘The Phase Function for Stellar Acoustic Oscillations — Part Three — The Solar Case’, MNRAS 269, 475.

    ADS  Google Scholar 

  • Peter, H.: 1996, ‘Velocity-dependent Fractionation in the Solar Chromosphere’, Astron. Astrophys. 312, L37–L40.

    ADS  Google Scholar 

  • Reames, D.V., Richardson, I.G., and Barbier, L.M.: 1991, ‘On the Differences in Element Abundances of Energetic Ions from Corotating Events and from Large Solar Events’, ApJ 382, L43–L46.

    Article  ADS  Google Scholar 

  • Reames, D.V: 1992, ‘Energetic Particle Observations and the Abundances of Elements in the Solar Corona’, in Proc. Ist SOHO Workshop, Annapolis, Maryland, USA, ESA SP-348, 315–323.

    ADS  Google Scholar 

  • Reames, D.V: 1995, ‘Coronal Abundances Determined from Energetic Particles’, Adv. Space Res. 15, No. 7, 45, 41–51.

    Article  ADS  Google Scholar 

  • Reames, D.V: 1998, ‘Solar Energetic Particles: Sampling Coronal Abundances’, Space Sci. Rev., this volume.

    Google Scholar 

  • Schmid, J., Bochsler, P., and Geiss, J.: 1988, ‘Abundance of Iron Ions in the Solar Wind’, ApJ 329, 956–966.

    Article  ADS  Google Scholar 

  • Shafer, CM., et al.: 1993, ‘Sulfur Abundances in the Solar Wind Measured by SWICS on Ulysses’, Adv. Space Res. 13, (6)79–(6)82.

    Article  ADS  Google Scholar 

  • Stone, E.C.: 1989, In Cosmic Abundances of Matter (ed. Waddington, C.J.), AIP Conf. Proc. 183, 72.

    Google Scholar 

  • Swider W., Jr.: 1969, ‘Processes for Meteoritic Elements in the E-Region’, Planet Space Sci. Vol. 17, 1233–1246.

    Article  ADS  Google Scholar 

  • Vernazza, J.E., Avrett, E.H., and Loeser, R.: 1981, ‘Structure of the Solar Chromosphere III’, The Astrophysical Journal Supplement Series 45, 635–725.

    Article  ADS  Google Scholar 

  • Verner, D.A., Ferland, G.J., and Korista, K.T.: 1996, ‘Atomic Data for Astrophysics. I. Radiative Recombination Rates for H-like, He-like, Li-like, and Na-like Ions over a Broad Range of Temperature’, ApJ 465, 487–498.

    Article  ADS  Google Scholar 

  • von Steiger, R.: 1988, Modelle zur Fraktionierung der Häufigkeiten von Elementen und Isotopen in der solaren Chromosphäre, Ph.D. Thesis, University of Bern.

    Google Scholar 

  • von Steiger, R., and Geiss J.: 1989, ‘Supply of Fractionated Gases to the Corona’, Astron. Astrophys. 225, 222–238.

    ADS  Google Scholar 

  • von Steiger, R., Christon, S.P., Gloeckler, G., and Ipavich, F.M.: 1992, ‘Variable Carbon and Oxygen Abundances in the Solar Wind as Observed in Earth’s Magnetosheath by AMPTE/CCE’, ApJ 389, 791–799.

    Article  ADS  Google Scholar 

  • von Steiger, R., Geiss, J., and Gloeckler, G.: 1997, ‘Composition of the Solar Wind’, in Cosmic Winds and the Heliosphere (eds. Jokipii, J.R., Sonett, C.P., and Giampapa, M.S.), Tucson: University of Arizona Press, 581–616.

    Google Scholar 

  • Wieler, R., Baur, H., and Signer, P.: 1993, ‘A Long-term Change of the Ar/Kr/Xe Fractionation in the Solar Corpuscular Radiation’, in Proc. Lunar Planet Sci. 24, Houston: Lunar and Planetary Institute, 1519–1520.

    Google Scholar 

  • Wieler, R., and Baur, H.: 1995, ‘Fractionation of Xe, Kr, and Ar in the Solar Corpuscular Radiation Deduced by Closed System Etching of Lunar Soils’, Astrophys. J. 453, 987–997.

    Article  ADS  Google Scholar 

  • Wieler, R.: 1998, ‘The Solar Noble Gas Record in Lunar Samples and Meteorites’, Space Sci. Rev., this volume.

    Google Scholar 

  • Williams, D.L., Leske, R.A., Mewaldt, R.A., and Stone, E.C.: 1998, ‘Solar Energetic Particle Isotopic Composition’, Space Sci. Rev., this volume.

    Google Scholar 

  • Wimmer-Schweingruber, R.F., von Steiger, R., and Paerli, R.: 1997, ‘Solar Wind Stream Interfaces in Corotating Interaction Regions: SWICS/Ulysses Results’, JGR 102, No. A8, 17407–17417.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Geiss, J. (1998). Constraints on the FIP Mechanisms from Solar Wind Abundance Data. In: Fröhlich, C., Huber, M.C.E., Solanki, S.K., Von Steiger, R. (eds) Solar Composition and its Evolution — from Core to Corona. Space Sciences Series of ISSI, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4820-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4820-7_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6022-6

  • Online ISBN: 978-94-011-4820-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics