Skip to main content

Increasing the flux in a metabolic pathway: a metabolic control analysis perspective

  • Chapter
Regulation of Primary Metabolic Pathways in Plants

Part of the book series: Proceedings of the Phytochemical Society of Europe ((PPSE,volume 42))

Abstract

Why is the solution to increasing the flux in a pathway not simply: (i) find the rate-limiting step; and (ii) amplify or activate it? There are theoretical and experimental grounds for expecting the above approach to fail:

  • Control of flux is distributed; rarely does any one enzyme have a large share of this control. This will be illustrated with results for ribulosebisphosphate carboxylase and the control of the reductive pentose phosphate pathway.

  • Amplification or activation of a single enzyme will generally yield a limited flux response. Theory predicts this; practical examples include amplification of phosphofructokinase in potato tubers.

  • Large flux increases require coordinate changes in several/many enzyme activities — the method used in vivo. Again, this can be predicted theoretically and has been partially demonstrated in the engineering of yeast tryptophan synthesis. The in vivo examples include light activation of photosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, L. E. (1986). Light/dark modulation of enzyme activity in plants. Advances in Botanical Research, 12, 1–46.

    Article  CAS  Google Scholar 

  • Burrell, M.M., Mooney, P.J., Blundy, M., Carter, D., Wilson, F., Green, J., Blundy, K.S., and ap Rees, T. (1994). Genetic manipulation of 6-phosphofructokinase in potato tubers. Planta, 194, 95–101.

    Article  CAS  Google Scholar 

  • Cornish-Bowden, A., Hofmeyr, J.-H.S., and Cárdenas, M. L. (1995). Strategies for manipulating fluxes in biotechnology. Bioorganic Chemistry, 23, 439–449.

    Article  CAS  Google Scholar 

  • Fell, D.A. (1992). Metabolic control analysis: a survey of its theoretical and experimental developments. Biochemical Journal, 286, 313–330.

    PubMed  CAS  Google Scholar 

  • Fell, D.A. (1996). Understanding the Control of Metabolism. Portland Press, London.

    Google Scholar 

  • Fell, D.A. and Thomas, S. (1995). Physiological control of flux: the requirement for multisite modulation. Biochemical Journal, 311, 35–39.

    PubMed  CAS  Google Scholar 

  • Geiger, D.R. and Servaites, J.C. (1994). Diurnal regulation of photosynthetic carbon metabolism in C3 plants. Annual Review of Plant Physiology and Plant Molecular Biology, 45, 235–256.

    Article  Google Scholar 

  • Heinrich, R. and Rapoport, T.A. (1974). A linear steady-state treatment of enzymatic chains; general properties, control and effector strength. European Journal of Biochemistry, 42, 89–95.

    Article  PubMed  CAS  Google Scholar 

  • Hofmeyr, J.-H.S. (1995). Metabolic regulation: a control analytic perspective. Journal of Bioenergetics and Biomembranes, 27, 479–489.

    Article  PubMed  CAS  Google Scholar 

  • Hofmeyr, J.-H.S. and Cornish-Bowden, A. (1991). Quantitative assessment of regulation in metabolic systems. European Journal of Biochemistry, 200, 223–236.

    Article  PubMed  CAS  Google Scholar 

  • Kacser, H. and Acerenza, L. (1993). A universal method for achieving increases in metabolite production. European Journal of Biochemistry, 216, 361–367.

    Article  PubMed  CAS  Google Scholar 

  • Kacser, H. and Burns, J.A. (1973). The control of flux. Symposia of the Society for Experimental Biology, 27, 65–104. Reprinted in Biochemical Society Transactions 23, 341–366, 1995.

    PubMed  CAS  Google Scholar 

  • Krebs, H.A. (1946). Enzymologia, 12, 88–100.

    Google Scholar 

  • Lauerer, M., Saftic, D., Quick, W.P., Labate, C., Fichtner, K., Schulze, E.D., Rodermel, S. R., Bogorad, L., and Stitt, M. (1993). Decreased ribulose-1,5-bisphosphate carboxylase-oxygenase in transgenic tobacco transformed with antisense rbcS. VI. Effect on photosynthesis in plants grown at different irradiance. Planta, 190, 332–345.

    Article  CAS  Google Scholar 

  • Mooney, P.J.F. (1994). Ph.D. thesis, University of London.

    Google Scholar 

  • Newsholme, E.A. and Start, C. (1973). Regulation in Metabolism. Wiley and Sons, London.

    Google Scholar 

  • Niederberger, P., Prasad, R., Miozzari, G., and Kacser, H. (1992). A strategy for increasing an in vivo flux by genetic manipulation: the tryptophan system of yeast. Biochemical Journal, 287, 473–479.

    PubMed  CAS  Google Scholar 

  • Schaaff, I., Heinisch, J., and Zimmerman, F.K. (1989). Overproduction of glycolytic enzymes in yeast. Yeast, 5, 285–290.

    Article  PubMed  CAS  Google Scholar 

  • Small, J.R. and Kacser, H. (1993a). Responses of metabolic sytems to large changes in enzyme activities and effectors. 1. The linear treatment of unbranched chains. European Journal of Biochemistry, 213, 613–624.

    Article  PubMed  CAS  Google Scholar 

  • Small, J.R. and Kacser, H. (1993). Responses of metabolic sytems to large changes in enzyme activities and effectors. 2. The linear treatment of branched pathways and metabolite concentrations. European Journal of Biochemistry, 213, 625–640.

    Article  PubMed  CAS  Google Scholar 

  • Stitt, M., Quick, W.P., Schurr, U., Schulze, E.D., Rodermel, S.R., and Bogorad, L. (1991). Decreased ribulose 1,5-bisphosphate carboxylase/oxygenase in transgenic tobacco transformed with antisense rbcS. II. Flux control coefficients for photosynthesis in varying light, CO2 and air humidity. Planta, 183, 555–566.

    CAS  Google Scholar 

  • Thomas, S. and Fell, D.A. (1996). Design of metabolic control for large flux changes. Journal of Theoretical Biology, 182, 285–298.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, S., Mooney, P.J.F., Burrell, M.M., and Fell, D.A. (1997a). Finite change analysis of lines of transgenic potato (Solanum tuberosum) overexpressing phosphofructokinase. Biochemical Journal, 322, 111–117.

    PubMed  CAS  Google Scholar 

  • Thomas, S., Mooney, P.J.F., Burrell, M.M., and Fell, D.A. (1997b). Metabolic control analysis of glycolysis in tuber tissue of potato (Solanum tuberosum): explanation for the low control coefficient of phosphofructokinase over respiratory flux. Biochemical Journal, 322, 119–127.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fell, D.A., Thomas, S. (1999). Increasing the flux in a metabolic pathway: a metabolic control analysis perspective. In: Kruger, N.J., Hill, S.A., Ratcliffe, R.G. (eds) Regulation of Primary Metabolic Pathways in Plants. Proceedings of the Phytochemical Society of Europe, vol 42. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4818-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4818-4_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6021-9

  • Online ISBN: 978-94-011-4818-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics