Skip to main content

The integration of sucrose and fructan metabolism in temperate grasses and cereals

  • Chapter

Part of the book series: Proceedings of the Phytochemical Society of Europe ((PPSE,volume 42))

Abstract

The metabolism of fructose polymers (fructans) in temperate Gramineae provides an interesting and distinctive alternative to that of starch. This review concentrates upon the characterisation of novel elements of fructan metabolism. Fructan structures are shown to be both varied and complex, but to possess a consistency within species which argues for a biosynthetic mechanism with a high degree of specificity. The synthetic and degradative mechanisms currently thought to be involved are discussed, with particular reference to the presence of multifunctional enzymes and the strong effects of both substrate and enzyme concentration on the chemical nature of the products in vitro. The need to reconcile the behaviour of enzymes in vitro with the patterns of metabolism observed in vivo is stressed. Finally, the regulation of fructan synthesis is discussed in relation to the pivotal role of sucrose as the sole substrate and as a key element in the induction of fructan accumulation, apparently acting at the level of gene expression.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Austin, R.B., Edrich, J.A., Ford, M.A. and Blackwell, R.D. (1977). The fate of the dry matter, carbohydrates and 14C lost from the leaves and stems of wheat during grain filling. Annals of Botany, 41, 1309–1321.

    CAS  Google Scholar 

  • Bancal, P. and Triboi, E. (1993). Temperature effect on fructan oligomer contents and fructan-related enzyme activities in stems of wheat (Triticum aestivum L.) during grain filling. New Phytologist, 123, 247–253.

    Article  CAS  Google Scholar 

  • Bonnett, G.D. and Incoll, L.D. (1992). The potential pre-anthesis and post-anthesis contributions of stem internodes to grain yield in crops of winter barley. Annals of Botany, 69, 219–225.

    Google Scholar 

  • Bonnett, G.D. and Simpson, R.J. (1993). Fructan hydrolase activities from Lolium rigidum Goudin. New Phytologist, 123, 443–451.

    Article  CAS  Google Scholar 

  • Bonnett, G.D. and Simpson, R.J. (1995). Fructan exohydrolase activities from Lolium rigidum that hydrolyze β-2,l-glycosidic and β-2,6-glycosidic linkages at different rates. New Phytologist, 131, 199–209.

    Article  CAS  Google Scholar 

  • Caimi, P.G., McCole, L.M., Klein, T.M. and Kerr, P.S. (1996). Fructan accumulation and sucrose metabolism in transgenic maize endosperm expressing a Bacillus amyloliquefaciens sacB gene. Plant Physiology, 110, 355–363.

    PubMed  CAS  Google Scholar 

  • Cairns, A.J. (1992). Fructan biosynthesis in excised leaves of Lolium temulentum L. V. Enzymatic de novo synthesis of large fructans from sucrose. New Phytologist, 120, 463–473.

    Article  CAS  Google Scholar 

  • Cairns, A.J. (1993). Evidence for the de novo synthesis of fructan by enzymes from higher plants: a reappraisal of the SST/FFT model. New Phytologist, 123, 15–24.

    Article  CAS  Google Scholar 

  • Cairns, A.J. (1995). Effects of enzyme concentration of oligofructan synthesis from sucrose. Phytochemistry, 40, 705–708.

    Article  CAS  Google Scholar 

  • Cairns, A.J. and Ashton, J.E. (1993). Species-dependent patterns of fuctan synthesis by enzymes from excised leaves of oat, wheat, barley and timothy. New Phytologist, 124, 381–388.

    Article  CAS  Google Scholar 

  • Cairns, A.J. and Ashton, J.E. (1994). Fructan biosynthesis in excised leaves of Lolium temulentum L. VI. Optimisation and stability of enzymatic fructan synthesis. New Phytologist, 126, 3–10.

    Article  CAS  Google Scholar 

  • Cairns, A.J., Bonnett, G.D., Gallagher, J.A., Simpson, R.J. and Pollock, C.J. (1997). Fructan biosynthesis in excised leaves of Lolium temulentum VII. Sucrose and fructan hydrolysis by a fructan-polymerising enzyme preparation. New Phytologist, 136, 61–72.

    CAS  Google Scholar 

  • Cairns, A.J. and Pollock, C.J. (1988a). Fructan biosynthesis in excised leaves of Lolium temulentum L. I. Chromatographic characterisation of oligofructans and their labelling patterns following 14CO2 feeding. New Phytologist, 109, 399–405.

    Article  CAS  Google Scholar 

  • Cairns, A.J. and Pollock, C.J. (1988b). Fructan biosynthesis in excised leaves of Lolium temulentum L. II. Changes in fructosyl transferase activity following excision and application of inhibitors of gene expression. New Phytologist, 109, 407–413.

    Article  CAS  Google Scholar 

  • Cairns, A.J., Winters, A. and Pollock, C.J. (1989). Fructan biosynthesis in excised leaves of Lolium temulentum L. III. A comparison of the in vitro properties of fructosyl transferase activities with the characteristics of in vivo fructan accumulation. New Phytologist, 112, 343–352.

    Article  CAS  Google Scholar 

  • Chatterton, N.J., Harrison, P.A., Thornley, W.R. and Bennett, J.H. (1993). Structures of fructan oligomers in orchard grass (Dactylis glomerata L.) Journal of Plant Physiology, 142, 552–556.

    Article  CAS  Google Scholar 

  • Collis, B.E. and Pollock, C.J. (1991). The control of sucrose synthesis in leaves of Lolium temulentum L., a fructan-accumulating grass. New Phytologist, 119, 483–489.

    Article  CAS  Google Scholar 

  • Collis, B.E. and Pollock, C.J. (1992). Cytoplasmic carbohydrate metabolism in leaf tissues undergoing fructan synthesis and breakdown. Journal of Plant Physiology, 140, 124–126.

    Article  CAS  Google Scholar 

  • Dey, P.M. (1980). Biochemistry of α-D-galactosidic linkages in the plant kingdom. Advances in Carbohydrate Chemistry and Biochemistry, 37, 283–372.

    Article  CAS  Google Scholar 

  • Dubois, D., Winzeler, M. and Nösberger, J. (1990). Fructan accumulation and sucrose:sucrose fructosyl transferase activity in stems of spring wheat genotypes. Crop Science, 30, 315–319.

    Article  CAS  Google Scholar 

  • Duchateau, N., Bortlik, K., Simmen, U., Wiemken, A., Bancal, P. (1995). Sucrose-fructan 6-fructosyl transferase: a key enzyme for diverting carbon from sucrose to fructan in barley leaves. Plant Physiology, 107, 1249–1255.

    PubMed  CAS  Google Scholar 

  • Edelman, J. and Jefford, T.G. (1968). The mechanism of fructosan metabolism in higher plants as exemplified in Helianthus tuberosus. New Phytologist, 67, 517–531.

    Article  CAS  Google Scholar 

  • Ernst, M., Chatterton, N.J. and Harrison, P.A. (1996). Purification and characterisation of a new fructan series from species of Asteraceae. New Phytologist, 132, 63–66.

    Article  CAS  Google Scholar 

  • Escalada, J.A. and Moss, D.N. (1976). Changes in the non-structural carbohydrate fractions of developing spring wheat kernels. Crop Science, 16, 627–631.

    Article  CAS  Google Scholar 

  • Fuchs, A. (1993a). Production and utilisation of inulin. Part I. Utilisation of inulin. In: Suzuki, M. and Chatterton, N.J. (Eds) Science and Technology of Fructans (pp. 320–352). CRC Press, Boca Raton.

    Google Scholar 

  • Fuchs, A. (Ed) (1993b). Inulin and inulin-containing crops: Studies in plant science, 3. Elsevier, Amsterdam.

    Google Scholar 

  • Hendrix, J.E. (1983). Phloem function: an integrated view. What’s New in Plant Physiology, 14, 45–48.

    Google Scholar 

  • Hendry, G.A.F. and Wallace, R.K. (1993). The origin, distribution and evolutionary significance of fructans. In: Suzuki, M. and Chatterton, N.J. (Eds). Science and Technology of Fructans (pp. 119–139). CRC Press, Boca Raton.

    Google Scholar 

  • Henson, C.A. and Livingston, D.P. (1996). Purification and characterization of an oat fructan exohydrolase that preferentially hydrolyzes beta-2,6-fructans. Plant Physiology, 110, 639–644.

    Article  PubMed  CAS  Google Scholar 

  • Ho, L.C. and Gifford, R.M. (1984). Accumulation and conversion of sugars by developing wheat grains. V. The endosperm apoplast and apoplastic transport. Journal of Experimental Botany, 35, 58–73.

    Article  CAS  Google Scholar 

  • Housley, T.L. and Daughtry, C.S.T. (1987). Fructan content and fructosyl transferase activity during wheat seed growth. Plant Physiology, 83, 4–7.

    Article  PubMed  CAS  Google Scholar 

  • Housley, T.L. and Pollock, C.J. (1985). Photosynthesis and carbohydrate metabolism in detached leaves of Lolium temulentum L. New Phytologist, 99, 499–502.

    Article  CAS  Google Scholar 

  • Huber, S.C., Bachmann, M., McMichael, R.W. and Huber, J.C. (1995). Regulation of sucrose phosphate synthase by reversible protein phosphorylation: manipulation of activation and inactivation in vivo. In: Pontis, H., Salerno, G. L. and Echeverria, E. J. (Eds). Sucrose Metabolism, Biochemistry, Physiology and Molecular Biology. (pp. 6–13). American Society of Plant Physiologists, Rockville.

    Google Scholar 

  • Jang, J.C. and Sheen, J. (1994). Sugar sensing in higher plants. Plant Cell, 6, 1665–1679.

    PubMed  CAS  Google Scholar 

  • Kaeser, W. (1983). Ultrastructure of storage cells in Jerusalem artichoke tubers (Helianthus tuberosus L.). Vesicle formation during inulin synthesis. Zeitschrift für Pflanzenphysiologie, 111, 253–260.

    CAS  Google Scholar 

  • Kingston-Smith, A.H. and Pollock, C.J. (1996). Tissue level localisation of acid invertase in leaves: an hypothesis for the regulation of carbon export. New Phytologist, 134, 423–432.

    Article  CAS  Google Scholar 

  • Koops, A.J. and Jonker, H.H. (1996). Purification and characterisation of the enzymes of fructan biosynthesis in tubers of Helianthus tuberosus (Colombia). 2. Purification of sucrose-sucrose 1-fructosyl transferase and reconstitution of fructan synthesis in vitro with purified sucrose-sucrose l-fructosyl transferase and fructan-fructan 1-fructosyl transferase. Plant Physiology, 110, 1167–1175.

    PubMed  CAS  Google Scholar 

  • Koroleva, O.A., Farrar, J.F., Tomos, A.D. and Pollock, C.J. (1997). Patterns of solute in individual mesophyll, bundle sheath and epidermal cells of barley leaves induced to accumulate carbohydrate. New Phytologist, 136, 97–104.

    CAS  Google Scholar 

  • Kühbauch, W. and Thome, U. (1989). Nonstructural carbohydrates of wheat stems as influenced by source-sink manipulations. Journal of Plant Physiology, 134, 243–250.

    Article  Google Scholar 

  • Lewis, D.H. (1993). Nomenclature and diagrammatic representation of oligomeric fructans: a paper for discussion. New Phytologist, 124, 583–594.

    Article  CAS  Google Scholar 

  • Lüscher, M., Erdin, C., Sprenger, N. Hochstrasser, U., Boller, T. and Wiemken, A. (1996). Inulin synthesis by a combination of purified fructosyl transferases from tubers of Helianthus tuberosus. FEBS Letters, 385, 39–42.

    Article  PubMed  Google Scholar 

  • MacLeod, A.M. and McCorquodale, H. (1958). Water-soluble carbohydrates of seeds of the Gramineae. New Phytologist, 57, 168–182.

    Article  CAS  Google Scholar 

  • Marrison, J.L., Schünmann, P.H.D., Ougham, H.J. and Leech, R.M. (1996). Subcellular utilization of gene transcripts encoding key proteins of the chlorophyll accumulation process in developing chloroplasts. Plant Physiology, 110, 1089–1096.

    PubMed  CAS  Google Scholar 

  • Marx, S.P., Nosberger, J., Frehner, M. (1997). Hydrolysis of fructan in grasses: A beta-(2-6)-linkage specific fructan-beta-fructosidase from stubble of Lolium perenne. New Phytologist, 135, 279–290.

    Article  CAS  Google Scholar 

  • Natr, L. (1969). Influence of assimilate accumulation on rate of photosynthesis of barley leaf segments. Photosynthetica, 3, 120–126.

    Google Scholar 

  • Obenland, D.M., Simmen, U., Boller T. and Wienken A. (1991). Regulation of sucrose-sucrose fructosyl transferase in barley leaves. Plant Physiology, 97, 811–813.

    Article  PubMed  CAS  Google Scholar 

  • Pearman, I., Thomas, S.M. and Thorne, G.N. (1978). Effects of nitrogen fertiliser on the distribution of photosynthate during grain growth of spring wheat. Annals of Botany, 42, 91–99.

    CAS  Google Scholar 

  • Pilon-Smits, E.A.H., Ebskamp, M.J.M., Jeuken, M.J.W., Van der Meer, I.M., Visser, R.G.F., Weisbeek, P.J. and Smeekens, S.C.M. (1996). Microbial fructan production in transgenic potato plants and tubers. Industrial Crops and Products, 5, 35–46.

    Article  CAS  Google Scholar 

  • Pilon-Smits, E.A.H., Ebskamp, M.J.M., Paul, M.J., Jeuken, M.J.W., Weisbeek, P.J. and Smeekens, S.C.M. (1995a). Improved performance of transgenic fructan-accumulating tobacco under drought stress. Plant Physiology, 107, 125–130.

    PubMed  CAS  Google Scholar 

  • Pilon-Smits, E.A.H., Ebskamp, M.J., Weisbeek, P.J. and Smeekens, S.C.M. (1995b). Frucan-accumulation in trangenic plants: effect on growth, carbohydrate partitioning and stress resistance. In: Pontis, H.G., Salerno, G.O. and Echeverria, E.J. (Eds). Sucrose metabolism, biochemistry, physiology and molecular biology (pp. 88–99). American Society of Plant Physiologists, Rockville.

    Google Scholar 

  • Pollock, C.J. (1979). Pathway of fructan synthesis in leaf bases of Dactylis glomerata. Phytochemistry, 18, 777–779.

    Article  CAS  Google Scholar 

  • Pollock, C.J. (1982). Patterns of turnover of fructans in leaves of Dactylis glomerata L. New Phytologist, 90, 645–650.

    Article  CAS  Google Scholar 

  • Pollock, C.J. and Cairns, A.J. (1991). Fructan metabolism in grasses and cereals. Annual Review of Plant Physiology and Plant Molecular Biology, 42, 77–101.

    Article  CAS  Google Scholar 

  • Pollock, C.J., Cairns, A.J., Sims, I.M. and Housley, T.L. (1996). Fructans as reserve carbohydrates in crop plants. In: Zamski, E. and Shaffer, A. A. (Eds). Photoassimilate distribution in plants and crops: source-sink relationships. (pp. 97–113). Marcel Dekker Inc, New York.

    Google Scholar 

  • Pollock, C.J., Hall, M.A. and Roberts, D.P. (1979). Structural analysis of fructose polymers by gas-liquid chromatography and gel filtration. Journal of Chromatography, 171, 411–415.

    Article  CAS  Google Scholar 

  • Pollock, C.J. and Jones, T. (1979). Seasonal patterns of fructan metabolism in forage grasses. New Phytologist, 83, 8–15.

    Article  Google Scholar 

  • Pollock, C.J. and Kingston-Smith, A.H. (1997). The vacuole and carbohydrate metabolism. In: Leigh, R.A. and Sanders, D. (Eds). Advances in Botanical Research, 25, 195–215, Academic Press, London.

    Google Scholar 

  • Pontis, H. (1995). A discussion on the present model of fructan biosynthesis. In: Pontis, H., Salerno, G.L. and Echeverria, E.J. (Eds). Sucrose Metabolism, Biochemistry, Physiology and Molecular Biology. (pp., 190–197). American Society of Plant Physiologists, Rockville, USA.

    Google Scholar 

  • Sachs, J. (1864). Uber die Spharokrystalle des Inulins und den mikroskopische Nachweisung in den Zellen. Botanische Zeitung 22, 77–81; 85–89.

    Google Scholar 

  • Schnyder, H. (1986). Carbohydrate metabolism in the growth zone of tall fescue leaf blades. In: Randall, D. D., Miles, C. D., Nelson, C. J., Blevins, D. G. and Miernyk, J. A. (Eds). Current topics in plant biochemistry and physiology, (pp. 47–58). University of Missouri, Columbia.

    Google Scholar 

  • Schnyder, H. (1993). The role of carbohydrate storage and redistribution in the source-sink relations of wheat and barley during grain filling — a review. New Phytologist, 123, 233–245.

    Article  Google Scholar 

  • Schnyder, H. and Nelson, C.J. (1987). Growth rates and carbohydrate fluxes within the elongation zone of tall fescue leaf blades at high and low irradiance. Plant Physiology, 85, 548–553.

    Article  PubMed  CAS  Google Scholar 

  • Schnyder, H. and Nelson, C.J. (1989). Growth rates and assimilate partitioning in the elongation zone of tall fescue leaf blades at high and low irradiance. Plant Physiology, 90, 1201–1206.

    Article  PubMed  CAS  Google Scholar 

  • Schnyder, H., Nelson, C.J. and Spollen, W.G. (1988). Diurnal growth of tall fescue leaf blades. II. Dry matter partitioning and carbohydrate metabolism in the elongation zone and adjacent expanded tissue. Plant Physiology, 86, 1077–1083.

    Article  PubMed  CAS  Google Scholar 

  • Silk, W.K. (1984). Quantitative descriptions of development. Annual Review of Plant Physiology, 35, 479–518.

    Article  Google Scholar 

  • Simmen, U., Obenland, D., Boller, T. and Wiemken, A. (1993). Fructan synthesis in excised barley leaves. Identification of two sucrose-sucrose fructosyl transferases induced by light and their separation from constitutive invertases. Plant Physiology, 101, 459–468.

    PubMed  CAS  Google Scholar 

  • Simpson, R.J. and Bonnett, G.D. (1993). Fructan exohydrolase from grasses. New Phytologist, 123, 453–469.

    Article  CAS  Google Scholar 

  • Simpson, R.J., Walker, R.P. and Pollock, C.J. (1991). Fructan exohydrolase in leaves of Lolium temulentum L. New Phytologist, 119, 499–507.

    Article  CAS  Google Scholar 

  • Sims, I.M., Horgan, R. and Pollock, C.J. (1993). The kinetic analysis of fructan biosynthesis in excised leaves of Lolium temulentum L. New Phytologist, 123, 25–29.

    Article  CAS  Google Scholar 

  • Slaughter, L.H. and Livingston, D.P. (1994). Separation of fructan isomers by high-performance anion-exchange chromatography. Carbohydrate Research, 253, 287–291.

    Article  CAS  Google Scholar 

  • Sprenger, N., Bortlik, K., Brandt, A., Boller, T. and Wiemken, A. (1995). Purification, cloning and functional expression of sucrose-fructan 6-transferase, a key enzyme of fructan synthesis in barley. Proceedings of the National Academy of Sciences USA, 92, 11652–11656.

    CAS  Google Scholar 

  • Sprenger, N., Schellenbaum, L., van Dun, K., Boller, T. and Wiemken, A. (1997). Fructan synthesis in transgenic tobacco and chicory plants expressing barley sucrose:fructan 6-fructosyl transferase. FEBS Letters, 400, 355–358.

    Article  PubMed  CAS  Google Scholar 

  • Stitt, M. (1996). Metabolic regulation of photosynthesis. In: Baker, N. R. (Ed). Photosynthesis and the environment (pp. 151–190). Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • St John, J.A., Bonnett, G.D., Simpson, R.J. and Tanner, G.J. (1997a). A fructan:fructan fructosyl transferase activity from Lolium rigidum. New Phytologist, 135, 235–247.

    Article  CAS  Google Scholar 

  • St John, J.A., Sims, I.M., Bonnett, G.D. and Simpson R.J. (1997b). The identification of products formed by a fructan:fructan fructosyl transferase activity from Lolium rigidum. New Phytologist, 135, 249–257.

    Article  CAS  Google Scholar 

  • Tomos, A.D., Leigh, R.A., Hinde, P., Richardson, P. and Williams, J.H.H. (1992a). Measuring water and soluble relations in single cells in situ. Current Topics in Plant Biochemistry and Physiology, 11, 168–177.

    CAS  Google Scholar 

  • Tomos, A.D., Leigh, R.A., Palta, J.A. and Williams, J.H.H. (1992b). Sucrose and cell water relations. In: Pollock, C.J., Farrar, J.F. and Gordon, A.J. (Eds). Carbon partitioning within and between organisms. (pp. 71–89). Bios, Oxford.

    Google Scholar 

  • Van den Ende, W. and Van Laere, A. (1996). De novo synthesis of fructans from sucrose in vitro by a combination of 2 purified enzymes (sucrose-sucrose 1-fructosyl transferase and fructan-fructan 1-frutosyl transferase from chicory roots (Cichorium intybus) L. Planta, 200, 335–342.

    Article  Google Scholar 

  • Van der Meer, I.M., Ebskamp, M.J.M., Visser, R.G.F., Weisbeek, P.J. and Smeekens, S.C.M. (1994). Plant Cell, 6, 561–570.

    Google Scholar 

  • Wagner, W., Keller, F. and Wiemken, A. (1983). Fructan metabolism in cereals: induction in leaves and compartmentation in protoplasts and vacuoles. Zeitschrift für Pflanzenphysiologie, 112, 359–372.

    CAS  Google Scholar 

  • Wagner, W. and Wiemken, A. (1987). Enzymology of fructan synthesis in grasses. Properties of sucrose-sucrose fructosyl transferase in barley leaves (Hordeum vulgare L. cv. Gerbel). Journal of Plant Physiology, 85, 706–710.

    Article  CAS  Google Scholar 

  • Wagner, W., Wiemken, A. and Matile, P.H. (1986). Regulation of fructan metabolism in leaves of barley (Hordeum vulgare L. cv. Gerbel). Journal of Plant Physiology, 81, 444–447.

    Article  CAS  Google Scholar 

  • Wiemken, A., Sprenger, N. and Boller, T. (1995). Fructan — an extension of sucrose by sucrose. In: Pontis, H. G., Salerno, G.L. and Echeverria, E. J. (Eds). Sucrose metabolism, biochemistry, physiology and molecular biology. (pp. 179–189.). American Society of Plant Physiologists, Rockville.

    Google Scholar 

  • Williams, M.L., Farrar, J.F. and Pollock, C.J. (1989). Cell specialisation within the parenchymatous bundle sheath of barley. Plant, Cell and Environment, 12, 909–918.

    Article  Google Scholar 

  • Winter, H., Robinson, D.G. and Heldt, H.W. (1993). Subcellular volumes and metabolite concentrations in barley leaves. Planta, 191, 180–190.

    Article  CAS  Google Scholar 

  • Winters, A.L., Williams, J.H.H., Thomas, D.S. and Pollock, C.J. (1994). Changes in gene expression in response to sucrose accumulation in leaf tissue of Lolium temulentum L. New Phytologist, 128, 591–600.

    Article  CAS  Google Scholar 

  • Yamamoto, S. and Mino, Y. (1989). Mechanism of phleinase induction in the stem base of orchard grass after defoliation. Journal of Plant Physiology, 134, 258–260.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pollock, C.J., Cairns, A.J., Gallagher, J., Harrison, J. (1999). The integration of sucrose and fructan metabolism in temperate grasses and cereals. In: Kruger, N.J., Hill, S.A., Ratcliffe, R.G. (eds) Regulation of Primary Metabolic Pathways in Plants. Proceedings of the Phytochemical Society of Europe, vol 42. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4818-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4818-4_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6021-9

  • Online ISBN: 978-94-011-4818-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics