Skip to main content

Tracking the Organic Refractory Component of Interstellar Dust

  • Chapter
Formation and Evolution of Solids in Space

Part of the book series: NATO ASI Series ((ASIC,volume 523))

Abstract

The abundance and composition of complex organic (carbonaceous) material in the interstellar dust is followed as the dust evolves in its cyclic evolution between diffuse and dense clouds. Interstellar extinction, laboratory and space analog experiments, dust infrared absorption spectra, the cosmic abundance of the condensible atoms, and space and ground-based observations of comet dust are used to impose constraints on the organic dust component as mantles on silicate cores.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamson, A.J., Whittet, D.C.B., Duley, W.W. (1990), The 3.4 μm interstellar absorption feature in Cyg OB2 no. 12, Mon. Not. R. Astron. Soc. 243, 400–404.

    ADS  Google Scholar 

  • Agarwal, V.K., Schutte, W.A., Greenberg, J.M., Ferris, J.P., Briggs, R., Connor, S., van de Bult, C.P.E.M., Baas, F. (1985), Photochemical reactions in interstellar grains, photolysis of CO, NH3 and H2O, Origins of Life 16, 21–40.

    Article  ADS  Google Scholar 

  • Allamandola, L.J., Sandford, S.A., and Valerio, G. (1988) Photochemical and chemical evolution of interstellar/pre-cometary ice analogs, Icarus 76, 225–252.

    Article  ADS  Google Scholar 

  • Allen, D.A., Wickramasinghe, D.T. (1981) Diffuse interstellar absorption band between 2.9 and 4.0 μm, Nature 294, 239–240.

    Article  ADS  Google Scholar 

  • Baas, F., Geballe, T.R., Walther, D.M. (1986) Spectroscopy of the 3.4 μm emission feature in Comet Halley, Astrophys. J. Lett. 311, L97–L101

    Article  ADS  Google Scholar 

  • Briggs, R., Ertem, G., Ferris, J.P., Greenberg, J.M., McCain, P.J., Mendoza-Gómez, C.X., Schutte, W.A. (1992) Comet Halley as an aggregate of interstellar dust and further evidence for the photochemical formation of organics in the interstellar medium, Origins of Life and Evolution of the Biosphere 22, 287–307.

    Article  ADS  Google Scholar 

  • Butchart, I., McFadzean, A.D., Whittet, D.C.B, Geballe, T.R., Greenberg, J.M. (1986) Three micron spectroscopy of the galactic centre source IRS 7, Astron. Astrophys. 154, L5–L7.

    ADS  Google Scholar 

  • Chiar, J., Adamson, A.J., Whittet, D.C.B. (1996) Three micron hydrocarbon and methanol absorption in Taurus, Astrophys. J. 472, 665–672.

    Article  ADS  Google Scholar 

  • Crovisier, J. (1998), this volume.

    Google Scholar 

  • Danks, A.C., Encrenaz, T., Bouchet, P., et al., (1986) Observation of an emission feature at 3.4 μm in the spectrum of Comet Halley, in 20th ESLAB Symp. on the Exploration of Halley’s Comet (B. Battrick, et al, eds.), ESA, Noordwijk, p. 103–106.

    Google Scholar 

  • Draine, B.T., Salpeter, E.E. (1979) Destruction mechanism for interstellar dust, Astrophys. J. 231, 438–455.

    Article  ADS  Google Scholar 

  • Draine, B.T., Lee, H.M. (1984) Optical properties of interstellar graphite and silicate grains, Astrophys. J. 285, 89–108.

    Article  ADS  Google Scholar 

  • Duley, W.W., Williams, D.A. (1979) Are there organic grains in the interstellar medium? Nature 277, 40–41.

    Article  ADS  Google Scholar 

  • Eberhardt, P., Krankowsky, D., Schulte, W., et al., (1987) The CO and N2 abundance in comet P/Halley, Astron. Astrophys. 187, 481–484.

    ADS  Google Scholar 

  • Gehrz, R.D. (1989) Sources of stardust in the galaxy, in Interstellar Dust (L.J. Allamandola, A.G.G.M. Tielens, eds.), Kluwer, p. 445–453.

    Google Scholar 

  • Greenberg, J.M., Yencha, A.J., Frisch, H.L. (1971) Growth, distribution and chemical composition of interstellar dust, Bull. Amer. Astron. Soc. 3, 250

    ADS  Google Scholar 

  • Greenberg, J.M., Yencha, A.J., Corbett, J.W., Frisch, H.L. (1972) Ultraviolet effects on the chemical composition and optical properties of interstellar grains, Mém. Soc. Roy. Sci. Liège, 6e série III, p. 425–436

    Google Scholar 

  • Greenberg, J.M. (1973) Chemical and physical properties of interstellar dust, in Molecules in the Galactic Environment (M.A. Gordon, L.E. Snyder, eds.), Proc. Symp. Interstellar MoleculesChariottesville, VAOct. 1971, Wiley, p. 94–124.

    Google Scholar 

  • Greenberg, J.M. (1974) The interstellar depletion mystery, or where have all those atoms gone? Astrophys. J. Lett. 189, L81–L85.

    Article  ADS  Google Scholar 

  • Greenberg, J.M. (1978) Interstellar dust, in Cosmic dust (J.A.M. McDonnell, ed.), Wiley, p. 187–294.

    Google Scholar 

  • Greenberg, J.M. (1979) From interstellar dust to comets to the zodiacal light, in: Cometary Missions (W.I. Axford, H. Fechtig, J. Rahe, eds.), Veröff. Remeis Sternwarte, Bamberg bd. XII nr. 132, p. 119–126.

    Google Scholar 

  • Greenberg, J.M. (1982a) Dust in dense clouds. One stage in a cycle, in: Submillimetre wave astronomy (J.E. Beckman, J.P. Phillips, eds.), Cambridge University Press, p. 261–306.

    Google Scholar 

  • Greenberg, J.M. (1982b) What are comets made of — a model based on interstellar dust, in: Comets (L. Wilkening, ed.), University of Arizona Press, p. 131–163.

    Google Scholar 

  • Greenberg, J.M., Chlewicki, G. (1983) A far ultraviolet extinction law: what does it mean? Astrophys. J. 272, 563–578

    Article  ADS  Google Scholar 

  • Greenberg, J.M. (1985) Evolution of interstellar grains: observations, theory, laboratory experiments, in: Birth and infancy of stars (R. Lucas, et al., eds.), Les Houches, session XLI, 1983, Elsevier, p. 141–203

    Google Scholar 

  • Greenberg, J.M. (1986) Dust in diffuse clouds: one stage in a cycle, in: Light on dark matter (Proc. IRAS Symp., Noordwijk, 10–14 June 1985) (ed. F. Israel), Reidel, p. 177–188.

    Google Scholar 

  • Greenberg, J.M., Hage, J.I. (1990) From interstellar dust to comets: a unification of observational constraints, Astrophys. J. 361, 260–274

    Article  ADS  Google Scholar 

  • Greenberg, J.M. (1991) Physical, chemical and optical interactions with interstellar dust, in Chemistry in Space (Greenberg, J.M., Pironello, V., eds), Kluwer, p. 227–261.

    Google Scholar 

  • Greenberg, J.M., Mendoza-Gómez, C.X., de Groot, M.S., Breukers, R. (1992) Laboratory dust studies and gas-grain chemistry, in: Dust and chemistry in astronomy (T.J. Millar, D.A. Williams, eds.) (Proc. conf. Manchester, Jan. 1992), IOP publ. Ltd., p. 265–288.

    Google Scholar 

  • Greenberg, J.M., Li, A., Mendoza-Gómez, C.X., Schutte, W.A., Gerakines, P.A., de Groot, M. (1995) Approaching the interstellar grain organic refractory component. Astrophys. J. Lett. 455, L177–L180.

    Article  ADS  Google Scholar 

  • Greenberg, J.M., Li, A. (1996) What are the true astronomical silicates? Astron. Astrophys. 309, 258–266.

    ADS  Google Scholar 

  • Greenberg, J.M. (1998) Making a comet nucleus, Astron. Astrophys. 330, 375–380

    ADS  Google Scholar 

  • Greenberg, J.M., Li, A. (1998) From interstellar dust to comets: the extended CO source in comet Halley, Astron. Astrophys. 332, 374–384.

    ADS  Google Scholar 

  • Grevesse, N., Noels, A., Saurai, J. (1996) in: Cosmic Abundances (S. Holt, G. Sonneborn, eds.), ASP conf. series 99, p. 117–176.

    Google Scholar 

  • Habing, H.J. (1998), this volume.

    Google Scholar 

  • Hoban, S., Mumma, M., Reuter, D.C., et al., (1991) A tentative identification of methanol ias the progenitor of the 3.52 micron emission feature in several comets, Icarus 93, 122–134.

    Article  ADS  Google Scholar 

  • Jenniskens, P., Baratta, G.A., Kouchi, A., de Groot, M.S., Greenberg, J.M., Strazzulla, G. (1993) Carbon dust formation on interstellar grains, Astron. Astrophys. 273, 583–600.

    ADS  Google Scholar 

  • Joblin, C., Léger, A., Martin, P. (1992) Contribution of polycyclic aromatic hydrocarbons to the interstellar extinction curve, Astrophys. J. Lett. 393, L79–L82.

    Article  ADS  Google Scholar 

  • Johnson, F.M. (1967) Diffuse interstellar lines and chemical characterization of interstellar dust, in: Interstellar Grains (Greenberg, J.M., Roark, T.P., eds), NASA, p. 229–240.

    Google Scholar 

  • Jones, A.P., Tielens, A.G.G.M., Hollenbach, D.J., et al., (1994) Grain destruction in shocks in the interstellar medium, Astrophys. J. 433, 797–810.

    Article  ADS  Google Scholar 

  • Kissel, J., Brownlee, D.E., Büchler, K., et al. (1986a) Composition of comet Halley dust particles from Giotto observations, Nature 321, 336–337

    Article  ADS  Google Scholar 

  • Kissel, J., Sagdeev, R.Z., Bertaux, J.L., et al. (1986b) Composition of comet Halley dust particles from Vega observations, Nature 321, 280–282

    Article  ADS  Google Scholar 

  • Kissel, J., F.R. Krueger (1987) The organic component in dust from comet Halley as measured by the PUMA mass spectrometer on board Vega 1, Nature 326, 755–760.

    Article  ADS  Google Scholar 

  • Knacke, R., Brooks, T.I., Joyce, R.R. (1986) Observations of 3.2–3.6 micron emission features in Comet Halley, Astrophys. J. Lett. 310, L49–L53.

    Article  ADS  Google Scholar 

  • Kouchi, A., Kuroda, T. (1990) Amorphization of cubic ice by ultraviolet irradiation, Nature 344, 134–135.

    Article  ADS  Google Scholar 

  • Krueger, F.R., Kissel, J. (1987) The chemical composition of the dust of cone P/Halley as measured by “PUMA” on board VEGA-1, Naturwissenschaften 74, 312.

    Article  ADS  Google Scholar 

  • Li, A., Greenberg, J.M. (1997) A unified model of interstellar dust, Astron. Astrophys. 323, 566–584.

    ADS  Google Scholar 

  • Li, A., Greenberg, J.M. (1998) From interstellar dust to comets: infrared emission from comet Hale-Bopp (C/1995 O1), Astrophys. J. Lett. 498, L83–L87.

    Article  ADS  Google Scholar 

  • Mathis, J.S., Rumpl, W., Nordsieck, K.H. (1977) The size distribution of interstellar grains, Astrophys. J. 217, 425–433.

    Article  ADS  Google Scholar 

  • McKee, C.F. (1989) Dust destruction in the interstellar medium, in L.J. Allamandola, A.G.G.M. Tielens (eds.), Interstellar Dust, Kluwer, Dordrecht, p. 431–443.

    Chapter  Google Scholar 

  • Mendoza-Gómez, C.X. (1992) Complex irradiation products in the interstellar medium, Thesis, Leiden.

    Google Scholar 

  • Mennella, V., Colangeli, L., Palumbo, P., Schutte, W.A., Bussoletti, E. (1996) Activation of a UV resonance in hydrogenated amorphous carbon grains by exposure to UV radiation, Astroph. J. Lett. 464, L191–L194.

    Article  ADS  Google Scholar 

  • Moore, M.H., Donn, B. (1982) The infrared spectrum of a laboratory-synthesized residue: implications for the 3.4 micron interstellar absorption feature, Astrophys. J. Lett. 257, L47–L50.

    Article  ADS  Google Scholar 

  • Mumma, M.J., Stern, S.A., Weissman, P.R. (1993) Comets and the origin of the solar system: Reading the Rosetta stone, in Planets and Protostars III (E.H. Levy, J.I. Lunine, M.S. Matthews, eds.), University of Arizona Press, Tucson, p. 1177–1252.

    Google Scholar 

  • Pendleton, Y.J., Sandford, S.A., Allamandola, L.J., Tielens, A.G.G.M., Seligren, K. (1994) Near-infrared absorption spectroscopy of interstellar hydrocarbon grains, Astrophys. J. 437, 683–696.

    Article  ADS  Google Scholar 

  • Sagan, C., Khare, B.N. (1971) Science 173, 447

    Article  ADS  Google Scholar 

  • Sakata, A., Wada, S. (1989) Chemical, optical and infrared properties of quenched carbonaceous composites (QCC’s), in Interstellar dust (eds. L.J. Allamandola, A.G.G.M. Tielens), Kluwer, Dordrecht, p. 191–196.

    Chapter  Google Scholar 

  • Sandford, S.A., Allamandola, L.J., Tielens, A.G.G.M., et al. (1991) The interstellar C-H stretching band near 3.4 microns: constraints on the composition of organic material in the diffuse interstellar medium, Astrophys. J. 371, 607–620.

    Article  ADS  Google Scholar 

  • Schutte, W.A., Greenberg, J.M. (1986) Formation of organic molecules on interstellar dust particles, in: Light on dark matter (Proc. IRAS Symp., Noordwijk, 10–14 June 1985) (F. Israel, ed.), Reidel, p. 229–232.

    Google Scholar 

  • Schutte, W.A. (1988) The evolution of interstellar organic grain mantles, Thesis, Leiden.

    Google Scholar 

  • Schutte, W.A., Greenberg, J.M. (1988) The evolution of organic refractory mantles on interstellar grains, in: Dust in the Universe (M.E. Bailey, D.A. Williams, eds.), Cambridge University Press, p. 403–406.

    Google Scholar 

  • Shalabiea, O.M., Greenberg, J.M. (1994) Two key processes in dust/gas chemical modelling: photoprocessing of grain mantles and explosive desorption, Astron. Astrophys. 290, 266–278

    ADS  Google Scholar 

  • Snyder, L.E., et al. (1969) Microwave detection of interstellar formaldehyde, Phys. Rev. Lett. 22, 679–681.

    Article  ADS  Google Scholar 

  • Stecher, T.P., Donn, B. (1965) On graphite and interstellar extinction, Astrophys. J. 142, 1681–1682

    Article  ADS  Google Scholar 

  • Tielens, A.G.G.M., Allamandola, L.J., Bregman, J., et al. (1984) Absorption features in the 5–8 micron spectra of protostars, Astrophys. J. 287, 697–706.

    Article  ADS  Google Scholar 

  • Tielens, A.G.G.M., Wooden, D.H., Allamandola, L.J., Bregman, J., Witteborn, F.C. (1996) The infrared spectrum of the galactic center and the composition of interstellar dust, Astrophys. J. 461, 210–222.

    Article  ADS  Google Scholar 

  • Tielens, A.G.G.M. (1998), this volume.

    Google Scholar 

  • Van de Hulst, H.C. (1949) The solid particles in interstellar space, Rech. Astron.Obs. Utrecht 11, pt. 2.

    Google Scholar 

  • Waelkens, C., Waters, L.B.F.M., de Graauw, M.S., et al. (1996) SWS observations of young main-sequence stars with dusty circumstellar disks, Astron. Astrophys. 315, L245–L248.

    ADS  Google Scholar 

  • Waters, L.B.F.M., Molster, F.J., de Jong, T., et al. (1996) Mineralogy of oxygen-rich dust shells, Astron. Astrophys. 315, L361–L364.

    ADS  Google Scholar 

  • Wexler, A.S. (1967) Integrated intensities of absorption bands in infrared spectroscopy, Appl. Spectrosc. Rev. 1, 29–98.

    Article  ADS  Google Scholar 

  • Whittet, D.C.B., Boogert, A.C.A., Gerakines, P.A., Schutte, W.A., et al., (1997) Infrared spectroscopy of dust in the diffuse interstellar medium toward Cygnus OB2 No. 12, Astrophys. J. 490, 729–734

    Article  ADS  Google Scholar 

  • Wickramasinghe, D.T., Allen, D.A. (1980) The 3.4 μm interstellar absorption feature, Nature 287, 518–519.

    Article  ADS  Google Scholar 

  • Willner, S.P., Russell, R.W., Puetter, R.C., et al. (1979) The 4 to 8 micron spectrum of the galactic center, Astrophys. J. Lett. 229, L65–L68.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Greenberg, J.M. (1999). Tracking the Organic Refractory Component of Interstellar Dust. In: Greenberg, J.M., Li, A. (eds) Formation and Evolution of Solids in Space. NATO ASI Series, vol 523. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4806-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4806-1_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6018-9

  • Online ISBN: 978-94-011-4806-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics