Skip to main content

Laboratory Simulation of Processes in Interstellar Ices

  • Chapter
Formation and Evolution of Solids in Space

Part of the book series: NATO ASI Series ((ASIC,volume 523))

Abstract

Laboratory applications to the study of interstellar ices are reviewed. An overview is given of the state-of-the-art in infrared spectroscopy of astrophysical ice analogs. Laboratory results on chemical processes relevant to the evolution of interstellar ice mantles are summarized. These are grain surface chemistry involving activationless reactions between atoms and molecules, activationless acid-base reactions, cryogenic reactions involving formaldehyde, and the energetic processing of the ices by ultraviolet radiation or energetic ions. Furthermore, the sublimation properties of pure and mixed ices of astrophysical relevance are summarized. Some areas in which the laboratory results have stimulated essential progress in the study of interstellar and comet ices are pointed out. Finally, some avenues are discussed through which the combined observation/laboratory simulation approach could clarify a number of standing issues on the role of ices in dense cloud chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agarwai V.K., Schutte W., Greenberg J.M., Ferris J.P., Briggs R., Connor S., van de Bult, C.P.E.M., Baas F. 1985, Photochemical reactions in interstellar grains. Photolysis of CO, NH3, and H2O, Origins of Life 16, 21–40.

    Article  ADS  Google Scholar 

  • Allamandola L.J., Sandford S. A. and Valero G. J. 1988, Photochemical and thermal evolution of interstellar/precometary ice analogs, Icarus 76, 225–252.

    Article  ADS  Google Scholar 

  • Allamandola L. J., Sandford S. A., Tielens A. G. G. M. and Herbst T. M. 1992, Infrared spectroscopy of dense clouds in the C-H stretching region: Methanol and “diamonds”, ApJ 399, 134–146.

    Article  ADS  Google Scholar 

  • Benit J., Bibring J.-R, Della-Negra S., Le Beyec Y., Mendenhall M., Rocard F., Standing K. 1987, Nuclear Instruments and Methods in Physics Research B19/20, 838–842.

    Google Scholar 

  • Bergren M.S., Schuh D., Sceats M.G., Rice S.A. 1978, The OH stretching region infrared spectra of low density amorphous solid water and polycrystalline ice Ih, J. Chem. Phys. 69, 3477–3482.

    Article  ADS  Google Scholar 

  • Bernstein M.P., Sandford S.A, Allamandola L.J., Chang S., Scharberg M.A. 1995, Organic compounds produced by photolysis of realistic interstellar and cometary ice analogs containing methanol, ApJ 454, 327–344.

    Article  ADS  Google Scholar 

  • Bernstein M.P., Sandford S.A, Allamandola L.J. 1997, The infrared spectra of nitriles and related compounds frozen in Ar and H2O, ApJ 476, 932–942.

    Article  ADS  Google Scholar 

  • Blake D., Allamandola L., Sandford AA., Hudgins D., Freund F. 1991, Clathrate hydrate formation in amorphous cometary ice analogs in vacuo, Science 254, 548–551.

    Article  ADS  Google Scholar 

  • Boogert, A.C.A., Schutte, W.A., Tielens, A.G.G.M., Whittet, D.C.B., Helmich, F.P., Ehrenfreund, P., Wesseelius, P.R., de Graauw, Th., and Prusti, T. 1996, Solid methane towards deeply embedded protostars, A&A 315, L377–L380.

    ADS  Google Scholar 

  • Boogert A.C.A., Schutte W.A., Helmich F.P, Tielens A.G.G.M., Wooden D.H. 1997, Infrared observations and laboratory simulations of interstellar CH4 and SO2, A&A 317, 929–941.

    ADS  Google Scholar 

  • Boudin N., Schutte W.A., Greenberg J.M. 1998, Constraints to the abundance of a number of molecules in interstellar ice: Laboratory studies and astrophysical implications, submitted to A&A.

    Google Scholar 

  • Briggs R., Ertem G., Ferris J. P., Greenberg J. M., McCain P. J., Mendoza-Gomez C. X. and Schutte W. 1992, Comet Halley as an aggregate of interstellar dust and further evidence for the photochemical formation of organics in the interstellar medium, Origins of Life and Evolution of the Biosphere 22, 287–307.

    Article  ADS  Google Scholar 

  • Charnley S.B., Kress M.E., Tielens A.G.G.M., Millar T.J. 1995, Interstellar alcohols, ApJ 448, 232–239.

    Article  ADS  Google Scholar 

  • Chiar J. E., Adamson A. J., Kerr T. H. and Whittet D. C. B. 1994, Solid carbon monoxide in the Serpens dark cloud, ApJ 426, 240–248.

    Article  ADS  Google Scholar 

  • Chiar J.E., Gerakines P.A., Whittet D.C.B., Pendleton Y.J., Tielens A.G.G.M., Adamson A.J., Boogert A.C.A. 1998, Processing of icy mantles in protostellar envelopes, ApJ, in press.

    Google Scholar 

  • de Graauw, Th., Whittet, D.C.B., Gerakines, P.A., Bauer, O.H., Beintema, D.A., Boogert, A.C.A., Boxhoorn, D.R., Chiar, J.E., Ehrenfreund, P., Feuchtgruber, H., Helmich, F.P., Heras, A.M., Huygen, R., Kester, D.J.M., Kunze, D., Lahuis, F., Leech, K.J., Lutz, D., Morris, P.W., Prusti, T., Roelfsema, P.R., Salama, A., Schaeidt, S.G., Schutte, W.A., Spoon, H.W.W., Tielens, A.G.G.M., Valentijn, E.A., Vandenbusshe, B., van Dishoeck, E. F., Wesselius, P.R., Wieprecht, E., Wright, C.M. 1996, SWS observations of solid CO2 in molecular clouds, A&A 315, L345–L348.

    ADS  Google Scholar 

  • d’Hendecourt L. B., Allamandola L. J., Baas F., and Greenberg J. M. 1982, Interstellar grain explosions: Molecule cycling between gas and dust, A&A 109, L12–L14.

    ADS  Google Scholar 

  • d’Hendecourt L. B., Allamandola L. J. and Greenberg J. M. 1985, Time dependent chemistry indense molecular clouds: I. Grain surface reactions, gas/grain interactions and infrared spectroscopy, A&A 152, 130–150.

    ADS  Google Scholar 

  • d’Hendecourt L. B., Allamandola L. J., Grim R. J. A. and Greenberg J. M. 1986, Time dependent chemistry indense molecular clouds: II. Ultraviolet photoprocessing and infrared spectroscopy of grain mantles, A&A 158, 119–134.

    ADS  Google Scholar 

  • d’Hendecourt L. B. and Allamandola L. J. 1986, Time dependent chemistry in dense molecular clouds. HI. Infrared band cross sections of molecules in solid state at 10 K, A&AS, 64, 453–467.

    ADS  Google Scholar 

  • d’Hendecourt L. B. and Jourdain de Muizon M. 1989, The discovery of interstellar carbon dioxide, A&A 223, L5–L8.

    ADS  Google Scholar 

  • Ehrenfreund P., Breukers R., d’Hendecourt L. and Greenberg J. M. 1992, On the possibility of detecting solid O2 in interstellar grain mantles, A&A 260, 431–436.

    ADS  Google Scholar 

  • Ehrenfreund, P., Gerakines, P. A., Schutte, W. A., and van Dishoeck, E. F. 1996a, Infrared properties of isolated water ice, A&A 312, 263–274.

    ADS  Google Scholar 

  • Ehrenfreund, P., Boogert, A.C.A., Gerakines, P.A., Jansen, D.J., Schutte, W.A., Tielens, A.G.G.M., van Dishoeck, E.F. 1996b, A laboratory database of solid CO and CO2 for ISO, A&A 315, L341–L344.

    ADS  Google Scholar 

  • Ehrenfreund, P., Boogert, A.C.A., Gerakines, P.A., Tielens, A.G.G.M., van Dishoeck, E.F. 1998, Infrared spectroscopy of interstellar apolar ice analogs, A&A, in press.

    Google Scholar 

  • Elsila J., Allamandola L.J., Sandford S.A. 1997, The 2140 cm−1 (4.673 µm) solid CO band: The case for interstellar O2 and N2 and the photochemistry of non-polar interstellar ice analogs, ApJ 479, 818–833.

    Article  ADS  Google Scholar 

  • Foti G., Calcagno L., Sheng K.L., Strazzulla G., Micrometre-sized polymer layers synthesized by MeV ions impinging on frozen methane 1984, Nature 310, 126–128.

    Google Scholar 

  • Geballe T. R., Baas F., Greenberg J. M. and Schutte W. 1985, New infrared absorption features due to solid phase molecules containing sulfur in W 33 A, A&A 146, L6–L8.

    ADS  Google Scholar 

  • Gerakines P. A., Schutte W. A., Greenberg J. M. and van Dishoeck E. F. 1995, The infrared band strenghts of H2O, CO and CO2 in laboratory simulations of astrophysical ice mixtures, A&A 296, 810–818.

    ADS  Google Scholar 

  • Gerakines, P. A., Schutte, W. A., Ehrenfreund, P., and van Dishoeck, E. F. 1996, Ultraviolet processing of interstellar ice analogs. I. Pure ices, A&A 312, 289–305.

    ADS  Google Scholar 

  • Gillett F. C. and Forrest W. J. 1973, Spectra of the Becklin-Neugebauer point source and the Kleinmann-Low nebula from 2.8–13.5 microns, ApJ 179, 483–491.

    Article  ADS  Google Scholar 

  • Gillett F. C, Jones T. W., Merrill K. M. and Stein W. A. 1975, Anisotropy of constituents of interstellar grains, A&A 45, 77–81.

    ADS  Google Scholar 

  • Goldsmith P.F. 1987, Molecular clouds: An overview, in Interstellar Processes, D.J. Hollenbach and H. Thronson eds., Reidel, Dordrecht, pp. 51–70.

    Chapter  Google Scholar 

  • Greenberg J.M. 1971, Interstellar grain temperatures: Effects of grain materials and radiation fields, A&A 12, 240–249.

    ADS  Google Scholar 

  • Greenberg J.M. 1982, What are comets made of ? A model based on interstellar dust. In Comets, L. Wilkening, Ed., Univ. of Arizona press, Tucson, pp. 131–163.

    Google Scholar 

  • Greenberg J.M., van de Bult C.E.P.M., Allamandola L.J. 1983, Ices in space, J. Phys. Chem. 87, 4243–4260.

    Article  ADS  Google Scholar 

  • Grim R. J. A. and d’Hendecourt L. B. 1986, Time dependent chemistry in dense molecular clouds: IV. Interstellar grain surface reactions inferred from a matrix isolation study, A&A 167, 161–165.

    ADS  Google Scholar 

  • Grim R. J. A. and Greenberg J. M. 1987, Ions in grain mantles: The 4.62 micron absorption by OCN in W33A, ApJ 321, L91–L96.

    Article  ADS  Google Scholar 

  • Grim R. J. A., Greenberg J. M., de Groot M. S., Baas F., Schutte W. A., and Schmitt B. 1989, Infrared spectroscopy of astrophysical ices: New insights in the photochemistry, A&AS 78, 161–186.

    ADS  Google Scholar 

  • Grim R. J. A., Baas F., Geballe T. R., Greenberg J. M. and Schutte W. 1991, Detection of solid methanol toward W 33A, A&A 243, 473–477.

    ADS  Google Scholar 

  • Gürtler J., Henningg Th., Kömpe C, Pfau W., Krätschmer W., Lemke D. 1996, Detection of an absorption band at the position of the 4.27-µm band of solid CO2, A&A 315, L189–L192.

    ADS  Google Scholar 

  • Hagen W., Tielens A.G.G.M., Greenberg J.M. 1981, The spectrum of amorphous solid water and ice Ic between 10 and 140 K, Chem. Phys. 56, 367–379.

    Article  Google Scholar 

  • Hagen W. and Tielens A. G. G. M. 1981, Infrared spectrum of H2O matrix isolated in CO at 10 K: Evidence for bifurcated dimers, J. Chem. Phys. 75, 4198–4207.

    Article  ADS  Google Scholar 

  • Hagen W. 1982, Chemistry and infrared spectroscopy of interstellar grains, PhD thesis, University of Leiden, the Netherlands.

    Google Scholar 

  • Hagen W., Tielens A.G.G.M., Greenberg J.M. 1983, A laboratory study of the infrared spectra of interstellar ices, A&AS 51, 389–416.

    ADS  Google Scholar 

  • Hasegawa T. I., Herbst E. and Leung C. M. 1992, Models of gas-grain chemistry in dense interstellar clouds with complex organic molecules, ApJS 82, 167–195.

    Article  ADS  Google Scholar 

  • Hasegawa T. I. and Herbst E. 1993, New gas-grain chemical models of quiescent dense interstellar clouds: the effects of H2 tunnelling reactions and cosmic ray induced desorption, MNRAS 261, 83–102.

    ADS  Google Scholar 

  • Helmich F.P., Millar T.J., van Dishoeck E.F. 1998, in preparation.

    Google Scholar 

  • Hiraoka K., Yamashita A., Yachi Y., Aruga K., Sata T., Muto H. 1995, Ammonia formation from the reaction of H atoms with N atoms trapped in a solid N2 matrix at 10–30 K, ApJ 443, 363–370.

    Article  ADS  Google Scholar 

  • Hiraoka K., Ohashi N., Kihara Y., Yamamoto K., Sata T., Yamashita A. 1994, Formation of formaldehyde and methanol from the reaction of H atoms with solid CO at 10–20 K, Chem. Phys. Letters 229, 408–414.

    Article  ADS  Google Scholar 

  • Hudgins D. M., Sandford S. A., Allamandola L. J. and Tielens A. G. G. M. 1993, Mid-and Far-infrared spectroscopy of ices: Optical constants and integrated absorbances, ApJS 86, 713–870.

    Article  ADS  Google Scholar 

  • Hudson R.L., Moore M.H. 1997, Hydrocarbon radiation chemistry in ices of cometary relevance, Icarus 126, 233–235.

    Article  ADS  Google Scholar 

  • Jenniskens P. and Blake D. F. 1994, Structural transitions in amorphous water ice and astrophysical implications, Science 265, 753–756.

    Article  ADS  Google Scholar 

  • Jessberger E.K., Kissel J., Cehmical properties of cometary dust and a note on carbon isotopes, In Comets in the Post-Halley era, R.L. Newburn, M. Neugebauer, and J. Rahe, Eds., Kluwer Academic Publishers, Dordrecht, pp. 1075–1091.

    Google Scholar 

  • Jiang G.J., Willis B.P., Brown K.G. 1975, Absolute infrared intensities and band shapes in pure solid CO and CO in some solid matrices, J. Chem. Phys. 62, 1201–1211.

    Article  ADS  Google Scholar 

  • Kaiser R.I., Roessler K. 1997, Theoretical and experimental studies of the interaction of cosmic ray particles with frozen matter in space. I. Synthesis of polycyclic aromatic hydrocarbons by cosmic ray induced multi center mechanism, ApJ, in press.

    Google Scholar 

  • Keane J., Schutte W.A. 1998, in preparation.

    Google Scholar 

  • Kerr T. H., Adamson A. J. and Whittet D. C. B. 1993, Infrared spectroscopy of solid CO: the Ophiuchi molecular cloud, MNRAS 262, 1047–1056.

    ADS  Google Scholar 

  • Kitta K., Krätschmer W. 1983, Status of laboratory experiments on ice mixtures and on the 12 µm H2O ice feature, A&A 122, 105–110.

    ADS  Google Scholar 

  • Lacy J. H., Baas F., Allamandola L. J., Persson S. E., McGregor P. J., Lonsdale C. J., Geballe T. R. and van de Bult C. E. P. 1984, 4.6 micron absorption features due to solid phase CO and cyano group molecules toward compact infrared sources, ApJ 276, 533–543.

    Article  ADS  Google Scholar 

  • Lacy J. H., Carr J. S., Evans N., Baas F., Achtermann J. M. and Arens F. 1991, Discovery of interstellar methane: Observations of gaseous and solid CH4 absorption toward youngg stars in molecular clouds, ApJ 376, 556–560.

    Article  ADS  Google Scholar 

  • Lanzerotti L.J., Brown W.L., Marcantonio K.J. 1987, Experimental study of erosion of methane ice by energetic ions and some considerations for astrophysics, ApJ 313, 910–919.

    Article  ADS  Google Scholar 

  • Léger A., Gauthier S., Defourneau D., Rouan D. 1983, Properties of amorphous H2O ice and origin of the 3.1 µm absorption, A&A 117, 164–169.

    ADS  Google Scholar 

  • Léger A., Jura M., Omont A. 1985, Desorption from interstellar grains, A&A 144, 147–160.

    ADS  Google Scholar 

  • Maréchal Y. 1987, IR spectra of carboxylic acids in the gas-phase: A quantitative reinvestigation, J. Chem. Phys. 87, 6344–6353.

    Article  ADS  Google Scholar 

  • Mathis J.S., Mezger P.G., Panagia N. 1983, Interstellar radiation field and dust temperatures in the diffuse matter and in giant molecular clouds, A&A 128, 212–229.

    ADS  Google Scholar 

  • Millar T.J., Macdonald G.H., Habing R.J. 1995, The detection of hot ethanol in G34.3+0.15, MNRAS 273, 25–29.

    ADS  Google Scholar 

  • Millar T.J. 1997, Models of hot molecular cores, In I.A.U. symposium no. 178: Molecules in astrophysics: Probes and processes, E. F. van Dishoeck, Ed., Kluwer, Dordrecht, pp. 75–88.

    Google Scholar 

  • Moore M.H., Donn B. 1982, The infrared spectrum of a laboratory synthesized residue: Implications for the 3.4 micron interstellar absorption feature 1982, ApJ 257, L47–L50.

    Article  ADS  Google Scholar 

  • Moore, M. H. Hudson R. L. 1992, Far-infrared spectral studies of phase changes in water ice produced by proton irradiation, ApJ 401, 353–360.

    Article  ADS  Google Scholar 

  • Moore, M. H. Hudson R. L. 1994, Far-infrared spectra of cosmic-type and mixed ices, A&AS. 103, 45–56.

    ADS  Google Scholar 

  • Ohishi M. 1997, Observations of “hot cores”, In I.A.U. symposium no. 178: Molecules in astrophysics: Probes and processes, E. F. van Dishoeck, Ed., Kluwer, Dordrecht, pp. 61–74.

    Google Scholar 

  • Omont A., Moseley S.H., Forveille T., Glaccum W.J., Harvey P.M., Likkel L., Loewenstein R.F., Lisse C.M. 1990, Observations of the 40–70 micron bands of ice in IRAS 09371+1212 and other stars, ApJ 355, L27–L30.

    Article  ADS  Google Scholar 

  • Palumbo M. E. and Strazulla G. 1992, The 2140 cm−1 band of frozen CO in ion-irradiated and unirradiated mixtures with methanol and water, A&A 259, L12–L14.

    ADS  Google Scholar 

  • Palumbo M. E. and Strazulla G. 1993, The 2140 cm−1 band of frozen CO: laboratory experiments and astrophysical applications, A&A 269, 568–580.

    ADS  Google Scholar 

  • Palumbo M.E., Tielens A.G.G.M., Tokunaga A.T. 1995, Solid carbonyl sulphide (OCS) in W33A, ApJ 449, 674–680.

    Article  ADS  Google Scholar 

  • Pironello V., Brown W. L., Lanzerotti L. J., Marcantonio K. J., Simmons E. J. 1982, Formaldehyde formation in a H2O/CO2 ice mixture under irradiation by fast ions, ApJ 262, 636–640.

    Article  ADS  Google Scholar 

  • Ritzhaupt G., Devlin J.P., 1977, Ionic vs. molecular nature of monomelic ammonium and hydronium nitrate. Infrared spectra of H3O+NO 3 and NH +4 NO 3 solvated in argon matrices, J. Phys. Chem. 81, 521–525.

    Article  Google Scholar 

  • Sandford S. A. and Allamandola L. J. 1988, The condensation and vaporization behavior of H2O:CO ices and the implications for interstellar grains and cometary activity, Icarus 76, 201–224.

    Article  ADS  Google Scholar 

  • Sandford S. A., Allamandola L. J., Tielens A. G. G. M., and Valero L. J. 1988, Laboratory studies of the infrared spectral properties of CO in astrophysical ices, ApJ 329, 498–510.

    Article  ADS  Google Scholar 

  • Sandford S. A. and Allamandola L. J. 1990, The physical and infrared spectral properties of CO2 in astrophysical ice analogues, ApJ 355, 357–372.

    Article  ADS  Google Scholar 

  • Sandford S. A. and Allamandola L. J. 1993a, H2 in interstellar and extragalactic ices: Infrared characteristics, ultraviolet production and implications, ApJ 409, L65–L68.

    Article  ADS  Google Scholar 

  • Sandford S. A., Allamandola L. J. and Geballe T. R. 1993, Spectroscopic detection of molecular hydrogen frozen in interstellar ices, Science 262, 400–402.

    Article  ADS  Google Scholar 

  • Sandford S. A. and Allamandola L. J. 1993b, Condensation and vaporization studies of CH3OH and NH3 ices: Major implications for astrochemistry, ApJ 417, 815–825.

    Article  ADS  Google Scholar 

  • Schmitt B., Grim R. J. A. and Greenberg J. M. 1988, Molecular diffusion in ices — Implications for the composition of interstellar grain mantles and comet nuclei, in experiments on cosmic dust analogues, eds. E. Bussoletti, C. Fusco and G. Longo (Dordrecht, Kluwer), p. 259–269.

    Chapter  Google Scholar 

  • Schmitt B. 1994, Physical and chemical processes in icy grain mantles, in AIP conference proceedings 312: Molecules and grains in space, ed. I. Nenner (New York, AIP press), 735–757.

    Google Scholar 

  • Schutte, W. A. 1988, The evolution of interstellar organic grain mantles, PhD thesis, University of Leiden, the Netherlands.

    Google Scholar 

  • Schutte W. A. and Greenberg J. M. 1991, Explosive desorption of icy grain mantles in dense clouds, A&A 244, 190–204.

    ADS  Google Scholar 

  • Schutte W. A., Tielens A. G. G. M. and Sandford S. A. 1991, 10 micron spectra of protostars and the solid methanol abundance, ApJ 382, 523–529.

    Article  ADS  Google Scholar 

  • Schutte W. A., Allamandola L. J. and Sandford S. A. 1993, An experimental study of the organic molecules produced in cometary and interstellar ice analogs by thermal formaldehyde reactions, Icarus 104, 118–137.

    Article  ADS  Google Scholar 

  • Schutte, W. A., Gerakines, P. A., Geballe, T. R., van Dishoeck, E. F., and Greenberg, J. M. 1996a, Discovery of solid formaldehyde towards the protostar GL 2136: Observations and laboratory simulation, A&A 309, 633–647.

    ADS  Google Scholar 

  • Schutte, W.A. 1996, Formation and Evolution of Interstellar Icy Grain Mantles, in:The Cosmic Dust Connection”, ed. J. M. Greenberg, pp. 1–42.

    Google Scholar 

  • Schutte, W.A., Tielens, A.G.G.M., Whittet, D.C.B., Boogert, A., Ehrenfreund, P., de Graauw, Th., Prusti, T., van Dishoeck, E. F., and Wesselius, P. 1996b, The 6 and 6.8 μm absorption features in the spectrum of NGC7538:IRS9, A&A 315, L333–L336.

    ADS  Google Scholar 

  • Schutte W.A., Greenberg J.M. 1997, Further evidence for the OCN assignment to the XCN band in astrophysical ice analogs, A&A 317, L43–L46.

    ADS  Google Scholar 

  • Skinner C. J., Tielens A. G. G. M., Barlow M. J., and Justtanont K. 1992, Methanol ice in the protostar GL 2136, ApJ 399, L79–L82.

    Article  ADS  Google Scholar 

  • Smith M. A. H., Rinsland C. P., Fridovich B., Rao K. N. 1985, in Molecular Spectroscopy: Modern research, Ed. K. N. Rao (Academic Press), Vol. III, p. 111.

    Google Scholar 

  • Smith R. G., Sellgren K. and Tokunaga A. T. 1989, Absorption features in the 3 micron spectra of protostars, ApJ 344, 413–426.

    Article  ADS  Google Scholar 

  • Strazzulla G., Calcagno L., Foti G. 1984, Build up of carbonaceous material by fast protons in Pluto and Triton, A&A 140, 441–444.

    ADS  Google Scholar 

  • Strazzulla G. and Baratta G. A. 1991, Laboratory study of the IR spectrum of ion-irradiated frozen methane, A&A 241, 310–316.

    ADS  Google Scholar 

  • Strazzulla G. and Baratta G. A. 1992, Carbonaceous Material by ion irradiation in space, A&A 266, 434–438.

    ADS  Google Scholar 

  • Tegler S.C., Weintraub D.A., Allamandola L.J., Sandford S.A., Rettig T.W., Campins H. 1993, Detection of the 2165 cm−1 inverse centimeter (4.619 micron) XCN band in the spectrum of L1551 IRS5, ApJ 411, 260–265.

    Article  ADS  Google Scholar 

  • Tegler S.C., Weintraub D.A., Rettig T.W., Pendleton Y.J., Whittet D.C.B., Kulesa C.A. 1995, Evidence for chemical processing of precometary ice grains in circumstellar environments of pre-main-sequence stars, ApJ 439, 279–287.

    Article  ADS  Google Scholar 

  • Tielens A.G.G.M. and Hagen W. 1982, Model calculations of the molecular composition of interstellar grain mantles, A&A 114, 245–260.

    ADS  Google Scholar 

  • Tielens A.G.G.M., Allamandola L.J. 1987a, Composition, structure, and chemistry of interstellar dust, in Interstellar Processes, D.J. Hollenbach and H. Thronson eds., Reidel, Dordrecht, 397–469.

    Chapter  Google Scholar 

  • Tielens A. G. G. M. and Allamandola L. J. 1987b, Evolution of interstellar dust, in Physical processes in interstellar clouds, eds. G. E. Morfill and M. Scholer, p. 333–376.

    Google Scholar 

  • Tielens A. G. G. M., Tokunaga A. T., Geballe T. R. and Baas F. 1991, Interstellar solid CO: Polar and nonpolar interstellar ices, ApJ 381, 181–199.

    Article  ADS  Google Scholar 

  • van Uzendoorn L.J., Allamandola L.J., Baas F., Greenberg J.M. 1983, Visible spectroscopy of matrix isolated HCO, J. Chem. Phys. 78, 7019–7018.

    Article  ADS  Google Scholar 

  • Whittet, D.C.B., Schutte, W.A., Tielens, A.G.G.M., Boogert, A.C.A., de Graauw, Th., Ehrenfreund, P., Gerakines, P.A., Helmich, F.P., Prusti, T., and van Dishoeck, E. F. 1996, An ISO view of interstellar ices-First results, A&A 315, L357–L360.

    ADS  Google Scholar 

  • Willner S. P., Gillett F. C, Herter T. L., Jones B., Merrill K. M., Pipher J. L., Puetter R. C, Rudy R. J., Russell R. W. and Soifer B. T. 1982, Infrared spectra of protostars: Composition of the dust shells, ApJ 253, 174–187.

    Article  ADS  Google Scholar 

  • Yamada H., Person W.B. 1964,, Absolute infrared intensities of the fundamental absorption bands is solid CO2 and N2O, J. Chem. Phys. 41, 2478–2487.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Schutte, W.A. (1999). Laboratory Simulation of Processes in Interstellar Ices. In: Greenberg, J.M., Li, A. (eds) Formation and Evolution of Solids in Space. NATO ASI Series, vol 523. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4806-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4806-1_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6018-9

  • Online ISBN: 978-94-011-4806-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics