Skip to main content

Transgenic Cereals — Zea mays (maize)

  • Chapter
Molecular improvement of cereal crops

Part of the book series: Advances in Cellular and Molecular Biology of Plants ((CMBP,volume 5))

Abstract

Genetic transformation of maize is routine in several genotypes despite the many difficulties encountered in developing reliable transformation techniques in this major cereal species. Aspects of maize tissue culture, including the target expiant, subsequent rapid in vitro proliferation and dependable regeneration from competent cells were prerequisite developments for gene delivery into maize. Recovery of transgenic, fertile maize required high levels of gene expression and identification of new selectable markers, along with DNA delivery into competent maize cells. DNA delivery by particle bombardment, Agrobacterium, electroporation and silica fiber methods have been the most carefully documented, each of which can now be used for gene transfer into maize. Promoters such as those from the CaMV 35S or ubiquitin genes, together with various introns have been widely used to achieve high expression levels, while the herbicide resistance gene, bar, has served as an important selectable marker for numerous studies in maize transformation. Although tissue culture cells were instrumental in the development of maize transformation, the direct use of expiants such as the immature embryo and/or meristems has found favor in more recent applications. Gene delivery in maize has shifted from emphasis on technology development to evaluation of gene expression with various transgenes, some of which are already in large-scale commercial development (e.g. insect and herbicide resistance). Maize transformation is increasingly being used to address more sophisticated aspects of gene regulation, plant development and physiology. The stability of transgene expression in primary transgenic plants and subsequent generations is of obvious academic and commercial importance. The isolation of promoters with a variety of expression profiles that are tissue-specific and/or temporally regulated will become more important as trait modification strategies evolve. Technologies such as site-directed integration, homologous recombination, ‘chimeraplasty’, and others will likely become routine in higher plants such as maize as this research area, now in its infancy, continues to develop. These technologies have the potential to aid our understanding of gene regulation, and to more directly make changes in endogenous gene sequences or to permit targeting of new genes (or regulatory elements) into precise genomic locations. With an assortment of accompanying genetic tools such as reverse genetic methods, mapping, genome-scale analysis and gene expression information, maize transformation has evolved into an important tool for both basic and applied studies in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abremski, K., Hoess, R., and Sternberg, N. (1983) Studies on the properties of P1 site-specific recombination: evidence for topologically unlinked products following recombination. Cell 32: 1301–1311.

    Article  PubMed  CAS  Google Scholar 

  • Akita, M., Nielsen, E., and Keegstra, K. (1997) Identification of protein transport complexes in the chloroplastic envelope membranes via chemical cross-linking. J. Cell Biol. 136: 983–994.

    Article  PubMed  CAS  Google Scholar 

  • Albert, H., Dale, E.C., Lee, E., and Ow, D.W. (1995) Site-specific integration of DNA into wild-type and mutant lox sites placed in the plant genome. Plant J. 7: 649–659.

    Article  PubMed  CAS  Google Scholar 

  • Albertsen, M.C., Fox, T.W., and Trimnell, M.R. (1993) Cloning and utilizing a maize nuclear male sterility gene. Proc. 48th Ann. Corn, and Sorghum Industry Res. Conf. pp. 224–233.

    Google Scholar 

  • An, G., Mitra, A., Choi, H.K., Costa, M.A., An, K., Thornburg, R.W., and Ryan, C.A. (1989) Functional analysis of the 3′ control region of the potato wound-inducible proteinase inhibitor II gene. Plant Cell 1: 115–122.

    PubMed  CAS  Google Scholar 

  • Antonelli, N.M., and Stadler, J. (1990) Genomic DNA can be used with cationic methods for highly efficient transformation of maize protoplasts. Theor. Appl. Genet. 80: 395–401.

    Article  CAS  Google Scholar 

  • Anzola, J., Luft, B.J., Gorgone, G., and Peltz, G. (1992) Characterization of a Borrelia burgdorferi dnaJ homolog. Infect, and Immun. 60: 4965–4968.

    CAS  Google Scholar 

  • Armstrong, C.L. (1994) Regeneration of plants from somatic cell cultures: Applications for in vitro genetic manipulation. In: Freeling, M., and Walbot, V. (eds), The Maize Handbook, pp. 663–670. Springer-Verlag, New York.

    Google Scholar 

  • Armstrong, C.L., and Green, C.E. (1985) Establishment and maintenance of friable, embryogenic maize callus and the involvement of L-proline. Planta. 164: 207–214.

    Article  CAS  Google Scholar 

  • Armstrong, C.L., Green, C.E., and Phillips, R.L. (1991) Development and availability of germplasm with high Type II culture formation response. Maize Genet. Coop. Newslett. 65: 92–93.

    Google Scholar 

  • Armstrong, C.L., Parker, G.B., Pershing, J.C, Brown, S.M., Sanders, P.R., Duncan, D.R., Stone, T., Dean, D.A., Deboer, D.L., Hart, J., Howe, A.R., Morrish, F.M., Pajeau, M.E., Petersen, W.L., Reich, B.J., Rodriguez, R., Santino, CG., Sato, S.J., Schuler, W., Sims, S.R., Stehling, S., Tarochione, L.J., and Fromm, M.E. (1995) Field evaluation of European corn borer control in progeny of 173 transgenic corn events expressing an insecticidal protein from Bacillus thuringiensis. Crop Sci. 35: 550–557.

    Article  Google Scholar 

  • Armstrong, C.L., Petersen, W.L., Buchholz, W.G., Bowen, B.A., and Sulc, S.L. (1990) Factors affecting PEG-mediated stable transformation of maize protoplasts. Plant Cell Rep. 9: 335–339.

    Article  CAS  Google Scholar 

  • Asseldonk, Mv., Simons, A., Visser, H., Vos, W.Md., and Simons, G. (1993) Cloning, nucleotide sequence, and regulatory analysis of the Lactococcus lactisdnaJ gene. J. Bacteriol. 175: 1637–1644.

    PubMed  Google Scholar 

  • Atencio, D.P., and Yaffe, M.P. (1992) MAS5, a yeast homolog of DnaJ involved in mitochondrial protein import. Mol. Cell Biol. 12: 283–291.

    PubMed  CAS  Google Scholar 

  • Aves, K., Genovesi, D., Willetts, N., Zachwieja, S., Mann, M., Spencer, T., Flick, C, and Gordon-Kamm, W. (1992) Transformation of an elite maize inbred through micro-projectile bombardment of regenerable embryogenic callus. In Vitro Cell Dev. Biol. 28: 74a.

    Google Scholar 

  • Bardwell, J.C.A., Tilly, K., Craig, E., King, J., Zylicz, M., and Georgopoulos, C. (1986) The nucleotide sequence of the Escherichia coli K12 dnaJ+ gene. J. Biol. Chem. 261: 1782–1785.

    PubMed  CAS  Google Scholar 

  • Barton, K.A., Whiteley, H.R., and Yang, N. (1987) Bacillus thuringiensis delta-endotoxin expressed in transgenic Nicotiana tabacum provides resistance to lepidopteran insects. Plant Physiol. 85: 1103–1109.

    Article  PubMed  CAS  Google Scholar 

  • Baszczynski, C.L., Barbour, E., Zeka, B.L., Maddock, S.E., and Swenson, J.L. (1997) Characterization of a genomic clone for a maize DnaJ-related gene, ZmdJl, and expression analysis of its promoter in transgenic plants. Maydica. 42: 189–201.

    Google Scholar 

  • Baubonis, W., and Sauer, B. (1993) Genomic targeting with purified Cre recombinase. Nuc. Acids Res. 21: 2025–2029.

    Article  CAS  Google Scholar 

  • Baumbach, L.L., Stein, G.S., and Stein, J.L. (1987) Regulation of human histone gene expression: transcriptional and posttranscriptional control in the coupling of histone messenger RNA stability with DNA replication. Biochemistry 26: 6178–6187.

    Article  PubMed  CAS  Google Scholar 

  • Becker, T.W., Templeman, TS., Viret, J.F., and Bogorad, L. (1992) The cab-m7 gene: a light-inducible, mesophyll-specific gene of maize. Plant Mol. Biol. 20: 49–60.

    Article  PubMed  CAS  Google Scholar 

  • Berlyn, G.P., and Miksche, J.P. (1976) Botanical Microtechnique and Cytochemistry. The Iowa State University Press, Ames, IA.

    Google Scholar 

  • Bessoule, J.J. (1993) Occurrence and sequence of a DnaJ protein in plant (Allium porrum) epidermal cells. FEBS Lett. 323: 51–54.

    Article  PubMed  CAS  Google Scholar 

  • Bidney, D., Scelonge, C, Martich, J., Burrus, M., Sims, L., and Huffman, G. (1992) Microprojectile bombardment of plant tissues increases transformation frequency by Agrobacterium tumefaciens. Plant Mol. Biol. 18: 301–313.

    Article  PubMed  CAS  Google Scholar 

  • Bittel, D.C., Shver, J.M., Somers, D.A., and Gengenbach, B.G. (1996) Lysine accumulation in maize cell cultures transformed with a lysine-insensitive form of maize dihydropicolinate synthase. Theor. Appl. Genet. 92: 70–77.

    Article  CAS  Google Scholar 

  • Block, Md., and Debrouwer, D. (1993) Engineered fertility control in transgenic Brassica napus L.: histochemical analysis of anther development. Planta. 189: 218–225.

    Article  Google Scholar 

  • Block, Md., Herrera-Estrella, L., Montagu, Mv., Schell, J., and Zambryski, P. (1984) Expression of foreign genes in regenerated plants and in their progeny. EMBO J. 3: 1681–1689.

    PubMed  Google Scholar 

  • Bodeau, J.P., and Walbot, V. (1992) Regulated transcription of the maize Bronze2 promoter in electroporated protoplasts requires the CI and R gene products. Mol. Gen. Genet. 233: 379–387.

    Article  PubMed  CAS  Google Scholar 

  • Boudet, A.M., and Grima-Pettenati, J. (1996) Lignin genetic engineering. Mol. Breed. 2: 25–39.

    Article  CAS  Google Scholar 

  • Bowen, B.A. (1993) Markers for plant gene transfer. In: Kung, S.-D., and Wu, R. (eds), Transgenic Plants, pp. 89–123, Academic Press, Inc., San Diego, CA.

    Google Scholar 

  • Brettschneider, R., Becker, D., and Lörz, H. (1997) Efficient transformation of scutellar tissue of immature maize embryos. Theor. Appl. Genet. 94: 737–748.

    Article  CAS  Google Scholar 

  • Browse, J., and Somerville, C. (1991) Glycerolipid synthesis: biochemistry and regulation. Ann. Rev. Plant Physiol. Plant Mol. Biol. 41: 467–506.

    Article  Google Scholar 

  • Bruce, W.B., Christensen, A.H., Klein, T., Fromm, M., and Quail, P.H. (1989) Photoregulation of a phytochrome gene promoter from oat transferred into rice by particle bombardment. Proc. Nat. Acad. Sci. USA 86: 9692–9696.

    Article  PubMed  CAS  Google Scholar 

  • Brusslan, J.A., Karlinneumann, G.A., Huang, L., and Tobin, E.M. (1993) An Arabidopsis mutant with a reduced level of cabl40 RNA is a result of cosuppression. Plant Cell. 5: 667–677.

    PubMed  CAS  Google Scholar 

  • Brusslan, J.A., and Tobin, E.M. (1995) Isolation of new promoter-mediated co-suppressed lines in Arabidopsis thaliana. Plant Mol. Biol. 27: 809–813.

    Article  PubMed  CAS  Google Scholar 

  • Burkhardt, C.C. (1978) Insect pests of corn. In: Pfadt, R.E. (ed.), Fundamentals of Applied Entomology, pp. 303–334. MacMillan Publishing Co. Ine, New York.

    Google Scholar 

  • Caimi, P.G., McCole, L.M., Klein, T.M., and Kerr, P.S. (1996) Fructan accumulation and sucrose metabolism in transgenic maize endosperm expressing a Bacillus amyloliquefaciens SacB gene. Plant Physiol. 110: 355–363.

    PubMed  CAS  Google Scholar 

  • Callis, J., Fromm, M., and Walbot, V. (1987) Introns increase gene expression in cultured maize cells. Genes Dev. 1: 1183–1200.

    Article  PubMed  CAS  Google Scholar 

  • Campbell, M.M., and Sederoff, R.R. (1996) Variation in lignin content and composition-mechanisms of control and implications for the genetic improvement of plants. Plant Physiol. 110: 3–13.

    PubMed  CAS  Google Scholar 

  • Campbell, W.H., and Gowri, G. (1990) Codon usage in higher plants, green algae, and cyanobacteria. Plant Physiol. 92: 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Cao, J., Wang, Y.C., Klein, T.M., Sanford, J., and Wu, R. (1990) Transformation of rice and maize using the biolistic process. In: Lamb, C.J., and Beachy, R.N. (eds), Plant Gene Transfer, pp. 21–33. UCLA Symp. Mol. Cell Biol., Vol. 129 Wiley-Liss Ine, New York.

    Google Scholar 

  • Capellades, M., Torres, M.A., Bastisch, I., Stiefel, V., Vignols, F., Bruce, W.B., Peterson, D., Puigdomenech. P., and Rigau, J. (1996) The maize caffeic acid O-methyltransferase gene promoter is active in transgenic tobacco and maize plant tissues. Plant Mol. Bio). 31: 307–322.

    Article  CAS  Google Scholar 

  • Caplan, A.J., and Douglas, M.G. (1991) Characterization of YDJl: A yeast homologue of the bacterial DnaJ protein. J. Cell Biol. 114: 609–621.

    Article  PubMed  CAS  Google Scholar 

  • Caplan, A.J., Tsai, J., Casey, P.J., and Douglas, M.G. (1992) Farnesylation of YDJ1p is required for function at elevated growth temperatures in Saccharomyces cerevisiae. J. Biol. Chem. 267: 1880–1895.

    Google Scholar 

  • Carle-Urioste, J.C., Brendel, V, and Walbot, V. (1997) A combinatorial role for exon, intron and splice site sequences in splicing in maize. Plant J. 11: 1253–1263.

    Article  PubMed  CAS  Google Scholar 

  • Casas, A.M., Kononowicz, A.K., Haan, T.G., Zhang, L., Tomes, D.T., Bressan, R.A., and Hasegawa, P.M. (1997a) Transgenic sorghum plants obtained after microprojectile bombardment of immature inflorescences. In Vitro Cell Dev. Biol. 33P: 92–100.

    Google Scholar 

  • Casas, A., Kononowicz, A., Zehr, U., Zhang, L., Haan, T., Tomes, D., Bressen, R., and Hasegawa, P. (1997b) Approaches to the genetic transformation of sorghum. In: Tsaftaris, A.S. (ed.), Genetics, Biotechnology and Breeding of Maize and Sorghum, pp. 88–93. Royal Society of Chemistry, Cambridge.

    Google Scholar 

  • Castillo, A.M., Vasil, V., and Vasil, I.K., (1994) Rapid production of fertile transgenic plants of rye (Secale cereale L.). Bio/Technology 12: 1366–1371.

    Article  CAS  Google Scholar 

  • Chair, H., Legavre, T., and Guiderdoni, E. (1996) Transformation of haploid, microspore-derived cell suspension protoplasts of rice (Oryza sativa L.). Plant Cell Rep. 15: 766–770.

    Article  CAS  Google Scholar 

  • Chalfie, M., Tu, Y, Euskirchen, G., Ward, W.W., and Prasher, D.C. (1994) Green fluorescent protein as a marker for gene expression. Science 263: 802–805.

    Article  PubMed  CAS  Google Scholar 

  • Chamberlin, M.A., Homer, H.T., and Palmer, R.G. (1993) Nuclear size and DNA content of the embryo and endosperm during their initial stages of development in Glycine max (Fabaceae). Amer. J. Bot. 80: 1209–1215.

    Article  Google Scholar 

  • Chang, A.K., and Duggleby, R.G. (1997) Expression, purification and characterization of Arabidopsis thaliana acetohydroxyacid synthase. Biochem. J. 327: 161–169.

    PubMed  CAS  Google Scholar 

  • Chaumont, F., Bernier, B., Buxant, R., Williams, M.E., Levings, CS., and Boutry, M. (1995) Targeting the maize T-urfl3 product into tobacco mitochondria confers mefhomyl sensitivity to mitochondrial respiration. Proc. Nat. Acad. Sci. USA 92: 1167–1171.

    Article  PubMed  CAS  Google Scholar 

  • Chee, M., Yang, R., Hubbell, E., Berno, A., Huang, X.C., Stern, D., Winkler, J., Lockhart, D.J., Morris, M.S., and Fodor, S.P. (1996) Accessing genetic information with high-density DNA arrays. Science 274: 610–614.

    Article  PubMed  CAS  Google Scholar 

  • Chiu, W, Niwa, Y, Zeng, W., Hirano, T., Kobayashi, H., and Sheen, J. (1996) Engineered GFP as a vital reporter in plants. Curr. Biol. 6: 325–330.

    Article  PubMed  CAS  Google Scholar 

  • Christensen, A.H., Sharrock, R.A., and Quail, P.H. (1992) Maize polyubiquitin genes: Structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol. Biol. 18: 675–689.

    Article  PubMed  CAS  Google Scholar 

  • Christou, P., and McCabe, D.E. (1992) Prediction of germ-line transformation events in chimeric R(0) transgenic soybean plantlets using tissue-specific expression patterns. Plant J. 2: 283–290.

    Article  CAS  Google Scholar 

  • Chuck, G., Lincoln, C, and Hake, S. (1996) KNATl induces lobed leaves with ectopic meristems when overexpressed in Arabidopsis. Plant Cell 8: 1277–1289.

    PubMed  CAS  Google Scholar 

  • Ciechanover, A., and Schwartz, A.L. (1994) The ubiquitin-mediated proteolytic pathway: mechanisms of recognition of the proteolytic substrate and involvement in the degradation of native cellular proteins. FASEB J. 8: 182–191.

    PubMed  CAS  Google Scholar 

  • Close, P.S. (1993) Cloning and molecular characterization of two nuclear genes for Zea mays mitochondrial chaperonin 60. PhD Thesis, pp. 218, Dept of Genetics, Iowa State University, Ames, IA.

    Google Scholar 

  • Coleman, CE., Clore, A.M., Ranch, J.P., Higgins, R., Lopes, M.A., and Larkins, B.A. (1997) Expression of a mutant alpha-zein creates the floury2 phenotype in transgenic maize. Proc. Nat. Acad. Sci. USA 94: 7094–7097.

    Article  PubMed  CAS  Google Scholar 

  • Cole-Strauss, A., Yoon, K., Xiang, Y, Byrne, B.C., Rice, M.C., Gryn, J., Holloman, W.K., and Kmiec, E.B. (1996) Correction of the mutation responsible for sickle cell anemia by an RNA-DNA oligonucleotide. Science 273: 1386–1389.

    Article  PubMed  CAS  Google Scholar 

  • Cornejo, M.J., Luth, D., Blankenship, K.M., Anderson, O.D., and Biechi, A.E. (1993) Activity of a maize ubiquitin promoter in transgenic rice. Plant Mol. Biol. 23: 567–581.

    Article  PubMed  CAS  Google Scholar 

  • Dale, E.C., and Ow, D.W. (1990) Intra-and intermolecular site-specific recombination in plant cells mediated by bacteriophage PI recombinase. Gene 91: 79–85.

    Article  PubMed  CAS  Google Scholar 

  • De Wet, J.M.J., De Wet, A.E., Brink, D.E., Hepburn, A.G., and Woods, J.A. (1986) Gametophyte transformation in maize (Zea mays, Gramineae). In: Mulcahy, D.L., Mulcahy, G.B., and Ottaviano, E. (eds) Biotechnology and Ecology of Pollen, pp. 59–64. Springer-Verlag, New York.

    Chapter  Google Scholar 

  • Delagrave, S., Hawtin, R.E., Silva, CM., Yang, M.M., and Youvan, D.C. (1995) Red-shifted excitation mutants of the green fluorescent protein. Bio/Technology 13: 151–154.

    Article  PubMed  CAS  Google Scholar 

  • Dennehey, B.K., Petersen, W.L., Ford-Santino, C, Pajeau, M., and Armstrong, C.L. (1994) Comparison of selective agents for use with the selectable marker gene bar in maize transformation. Plant Cell Tiss. Org. Cult. 36: 1–7.

    Article  CAS  Google Scholar 

  • D’Halluin, K., Bonne, E., Bossut, M, De Beuckeleer, M., and Leemans, J. (1992) Transgenic maize plants by tissue electroporation. Plant Cell. 4: 1495–1505.

    PubMed  Google Scholar 

  • Didierjean, L., Frendo, P., Nasser, W., Genot, G., Marivet, J., and Burkhard, G. (1996) Heavy-metal-responsive genes in maize: Identification and comparison of their expression upon various forms of abiotic stress. Planta. 199: 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Dixon, R.A., Lamb, C.J., Masoud, S., Sewalt, V.J.H., and Paiva, N.L. (1996) Metabolic engineering: prospects for crop improvement through the genetic manipulation of phenylpropanoid biosynthesis and defense responses-a review. Gene 179: 61–71.

    Article  PubMed  CAS  Google Scholar 

  • Donn, G., Nilges, M., and Morocz, S. (1990) Stable transformation of maize with a chimaeric, modified phosphinothricin acetyltransferase gene from Streptomyces viridochromogenes. Abstracts Vllth International Congress on Plant Tissue and Cell Culture, Amsterdam, p. 53.

    Google Scholar 

  • Dooner, H.K., Robbins, R.P., and Jorgensen, R.A. (1991) Genetic and developmental control of anthocyanin biosynthesis. Ann. Rev. Genet. 25: 173–199.

    Article  PubMed  CAS  Google Scholar 

  • Dowswell, CR., Paliwal, R.L., and Cantrell, R.P. (1996) Maize in the Third World. Westview Press, Boulder, CO.

    Google Scholar 

  • Dudov, K.P., and Perry, R.P. (1986) Properties of a mouse ribosomal protein promoter. Proc. Nat. Acad. Sci. USA 83: 8545–8549.

    Article  PubMed  CAS  Google Scholar 

  • Dupuis, I., and Pace, G.M. (1993) Gene transfer to maize male reproductive structure by particle bombardment of tassel primordia. Plant Cell Rep. 12: 607–611.

    CAS  Google Scholar 

  • Evans, R., Wang, A., Hanten, J., Altendorf, P., and Mettler, I. (1996) A positive selection system for maize transformation. In Vitro Cell Dev. Biol. 32: 72a.

    Google Scholar 

  • Faranda, S., Genga, A., Viotti, A., and Manzocchi, L.A. (1994) Stably transformed cell lines from protoplasts of maize endosperm suspension cultures. Plant Cell Tiss. Org. Cult. 37: 39–46.

    Article  CAS  Google Scholar 

  • Fennell, A., and Hauptmann, R. (1992) Electroporation and PEG delivery of DNA into maize microspores. Plant Cell Rep. 11: 567–570.

    Article  CAS  Google Scholar 

  • Fischhoff, D.A., Bowdish, K.S., Perlak, F.J., Marrone, P.G., McCormick, S.M., Niedermeyer, J.G., Dean, D.A., Kusano-Kretzmer, K., Mayer, E.J., Rochester, D.E., Rogers, S.G., and Fraley, R.T. (1987) Insect tolerant transgenic tomato plants. Bio/Technology 5: 807–813.

    Article  CAS  Google Scholar 

  • Fleming, G.H., Kramer, CM., Le, T., and Shillito, R.D. (1995) Effect of DNA fragment size on transformation frequencies in tobacco (Nicotiana tabacum) and maize (Zea mays). Plant Sci. 110: 187–192.

    Article  CAS  Google Scholar 

  • Fontes, E.B.P., Shank, B.B., Wrobel, R.L., Moose, S.P., Obrian, G.R., Wurzel, E.T., and Boston, R.S. (1991) Characterization of an immunoglobin binding protein homolog in the maize floury-2 endosperm mutant. Plant Cell 3: 483–496.

    PubMed  CAS  Google Scholar 

  • Fox, P.C., Vasil, V., Vasil, I.K., and Gurley, W.B. (1992) Multiple ocs-like elements required for efficient transcription of the mannopine synthase gene of T-DNA in maize protoplasts. Plant Mol. Biol. 20: 219–233.

    Article  PubMed  CAS  Google Scholar 

  • Fraley, R.T., Horsch, R.B., Matzke, A., Chilton, M.D., Chilton, W.S., and Sanders, P.R. (1984) In vitro transformation of petunia cells by an improved method of co-cultivation with Agrobacterium tumefaciens strains. Plant Mol. Biol. 3: 371–378.

    Article  CAS  Google Scholar 

  • Frame, B.R., Drayton, PR., Bagnali, S.V., Lewnau, C.J., Bullock, W.P., Wilson, H.M., Dunwell, J.M., Thompson, LA., and Wang, K. (1994) Production of fertile transgenic maize plants by silicon carbide whisker-mediated transformation. Plant J. 6: 941–948.

    Article  CAS  Google Scholar 

  • Fromm, M.E., Morrish, F., Armstrong, C, Williams, R., Thomas, L, and Klein, T.M. (1990) Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Bio/Technology 8: 833–839.

    Article  PubMed  CAS  Google Scholar 

  • Fromm, M., Taylor, L.P., and Walbot, V. (1985) Expression of genes transferred into monocot and dicot plant cells by electroporation. Proc. Nat. Acad. Sci. USA 82: 5824–5828.

    Article  PubMed  CAS  Google Scholar 

  • Fromm, M.E., Taylor, L.P., and Walbot, V. (1986) Stable transformation of maize after gene transfer by electroporation. Nature 319: 791–793.

    Article  PubMed  CAS  Google Scholar 

  • Fu, H., Kim, S.Y., and Park, W.D. (1995) High-level tuber expression and sucrose inducibility of a potato Sus4 sucrose synthase gene require 5′ and 3′ flanking sequences and the leader intron. Plant Cell 7: 1387–1394.

    PubMed  CAS  Google Scholar 

  • Gallie, D.R., and Young, T.E. (1994) The regulation of gene expression in transformed maize aleurone and endosperm protoplasts. Analysis of promoter activity, intron enhancement, and mRNA untranslated regions on expression. Plant Physiol. 106: 929–939.

    Article  PubMed  CAS  Google Scholar 

  • Gamborg, O.L., Shyluk, J.P., and Shahin, E.A. (1981) Isolation, fusion and culture of plant protoplasts. In: Thorpe, T.A. (ed.) Plant Tissue Culture: Methods and Applications in Agriculture, pp. 115–154. Academic Press, New York.

    Google Scholar 

  • Genschik, P., Jamet, E., Philipps, G., Parmentier, Y., Gigot, C, and Fleck, J. (1994) Molecular characterization of a beta-type proteasome subunit from Ambidopsis thaliana co-expressed at a high level with an alpha-type proteasome subunit early in the cell cycle. Plant J. 6: 537–546.

    Article  PubMed  CAS  Google Scholar 

  • Giovinazzo, G., Manzocchi, L.A., Bianchi, M.W., Coraggio, I., and Viotti, A. (1992) Functional analysis of the regulatory region of a zein gene in transiently transformed protoplasts. Plant Mol. Biol. 19: 257–263.

    Article  PubMed  CAS  Google Scholar 

  • Goff, S.A., Klein, T.M., Roth, B.A., Fromm, M.E., Cone, K.C., Radicella, J.P., and Chandler, V.L. (1990) Transactivation of anthocyanin biosynthetic genes following transfer of B regulatory genes into maize tissues. EMBO J. 9: 2517–2522.

    PubMed  CAS  Google Scholar 

  • Golovkin, M.V., Abraham, M., Morocz, S., Bottka, S., Feher, A., and Dudits, D. (1993) Production of transgenic maize plants by direct DNA uptake into embryogenic protoplasts. Plant Sci. 90: 41–52.

    Article  CAS  Google Scholar 

  • Goodall, G.J., and Filipowicz, W. (1990) The minimum functional length of pre-mRNA introns in monocots and dicots. Plant Mol. Biol. 14: 727–733.

    Article  PubMed  CAS  Google Scholar 

  • Gordon-Kamm, W.J., Adams, T.R., Adams, W.R., Chambers, S.A., Courreges, V.C., Daines, R.J., Mangano, M.L., O’Brien, J.V., Spencer, T.M., Start, W.G., Willetts, N.G., Kausch, A.P., Krueger, R.W., Lemaux, P.G., and Mackey, C.J. (1989) Stable transformation of embryogénie maize cultures by microprojectile bombardment. J. Cell Biochem. 13D: 259.

    Google Scholar 

  • Gordon-Kamm, W.J., Spencer, M.T., Mangano, M.L., Adams, T.R., Daines, R.J., Start, W.G., O’Brien, J.V., Chambers, S.A., Adams, W.R., Jr., Willetts, N.G., Rice, T.B., Mackey, C.J., Krueger, R.W., Kausch, A.P., and Lemaux, PG. (1990) Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2: 603–618.

    PubMed  CAS  Google Scholar 

  • Gould, J., Devey, M., Hasegawa, O., Ulian, E.C., Peterson, G., and Smith, R.H. (1991) Transformation of Zea mays L. using Agrobacterium tumefaciens and the shoot apex. Plant Physiol. 95: 426–432.

    Article  PubMed  CAS  Google Scholar 

  • Gould, S.J., Keller, G.A., and Subramani, S. (1988) Identification of peroxisomal targeting signals located at the carboxy terminus of four peroxisomal proteins. J. Cell Biol. 107: 897–905.

    Article  PubMed  CAS  Google Scholar 

  • Graham, M.W., and Larkin, P.J. (1995) Adenine methylation at dam sites increases transient gene expression in plant cells. Transgen. Res. 4: 324–331.

    Article  CAS  Google Scholar 

  • Grebenok, R.J., Pierson, E., Lambert, G.M., Gong, F.C., Afonso, C.L., Haldemann-Cahill, R., Carrington, J.C., and Galbraith, D.W. (1997) Green-fluorescent protein fusions for efficient characterization of nuclear targeting. Plant J. 11: 573–586.

    Article  PubMed  CAS  Google Scholar 

  • Green, C.E., and Phillips, R.L. (1975) Plant regeneration from tissue cultures of maize. Crop Sci. 15: 417–427.

    Article  Google Scholar 

  • Grimsley, N.H., Ramos, C, Hein, T., and Hohn, B. (1988) Meristematic tissues of maize plants are most susceptible to agroinfection with maize streak virus. Bio/Technology 6: 185–189.

    Article  Google Scholar 

  • Grosset, J., Alary, R., Gautier, M.-F., Menossi, M., Martínez-Izquierdo, J.A., and Joudrier, P. (1997) Characterization of a barley gene encoding for a α-amylase inhibitor subunit (CMd protein) and analysis of its promoter in transgenic tobacco plants and in maize kernels by microprojertile bombardment. Plant Mol. Biol. 34: 331–338.

    Article  PubMed  CAS  Google Scholar 

  • Grula, J.W., Hudspeth, R.L., Hobbs, S.L., and Anderson, D.M. (1995) Organization, inheritance and expression of acetohydroxyacid synthase genes in the cotton allotetraploid Gossypium hirsutum. Plant Mol. Biol. 28: 837–846.

    Article  PubMed  CAS  Google Scholar 

  • Hacia, J.G., Brody, L.C., Chee, M.S., Fodor, S.P., and Collins, F.S. (1996) Detection of heterozygous mutations in BRCAl using high density oligonucleotide arrays and two-colour flourescence analysis. Nature Genetics 14: 441–447.

    Article  PubMed  CAS  Google Scholar 

  • Hartley, R.W. (1988) Barnase and barstar expression of its cloned inhibitor permits expression of a cloned ribonuclease. J. Mol. Biol. 202: 913–915.

    Article  PubMed  CAS  Google Scholar 

  • Haseloff, J., and Amos, B. (1995) GFP in plants. Trends Genet. 11: 328–329.

    Article  PubMed  CAS  Google Scholar 

  • Haughn, G.W., Smith, J., Mazur, B., and Somerville, C. (1988) Transformation with a mutant Arabidopsis acetolactate synthase gene renders tobacco resistant to sulfonylurea herbicides. Mol. Gen. Genet. 211: 266–271.

    Article  CAS  Google Scholar 

  • Heim, R., and Tsien, R.Y. (1996) Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr. Biol. 6: 178–182.

    Article  PubMed  CAS  Google Scholar 

  • Hernalsteens, J.P., Thia-Toong, L., Schell, J., and Montagu, Mv. (1984) An Agrobacterium-transformed cell culture from the monocot Asparagus officinalis. EMBO J. 3: 3039–3041.

    PubMed  CAS  Google Scholar 

  • Hess, D. (1987) Pollen-based techniques in genetic manipulation. Int. Rev. Cytol. 107: 367–395.

    Article  Google Scholar 

  • Hill, M., Launis, K., Bowman, C, McPherson, K., Dawson, J., Watkins, J., Koziel, M., and Wright, M.S. (1995) Biolistic introduction of a synthetic Bt gene into elite maize. Euphytica 85: 119–123.

    Article  CAS  Google Scholar 

  • Hobbs, S.L.A., Kpodar, R, and DeLong, C.M.O. (1990) The effects of T-DNA copy number, position and methylation on reporter gene expression in tobacco transformants. Plant Mol. Biol. 15: 851–864.

    Article  PubMed  CAS  Google Scholar 

  • Hoess, R.H., Wierzbicki, A., and Abremski, K. (1986) The role of the loxP spacer region in P1 site-specific recombination. Nuc. Acids Res. 14: 2287–2300.

    Article  CAS  Google Scholar 

  • Hohn, B., Hohn, T., Boulton, M.I., Davies, J.W., and Grimsley, N. (1987) Agroinfection of Zea mays with maize streak virus DNA. In: Wettstein, D., and Chua, N.H. (eds), NATO Adv. Sci. Inst., Ser. A, Life Sci., pp. 459–468. Plenum Press, New York.

    Google Scholar 

  • Hood, E.E., Witcher, D.R., Maddock, S., Meyer, T., Baszczynski, C, Bailey, M., Flynn, P., Register, J., Marshall, L., Bond, D., Kulisek, E., Kusnadi, A., Evangelista, R., Nikolov, Z., Wooge, C, Mehigh, R.J., Hernán, R., Kappel, W.K., Ritland, D., Li, C.P., and Howard, J.A. (1997) Commercial production of avidin from transgenic maize: characterization of transformant, production, processing, extraction and purification. Mol. Breed 3: 291–306.

    Article  CAS  Google Scholar 

  • Howard, E.A., Danna, K.J., Dennis, E.S., and Peacock, W.J. (1985) Transient expression in maize protoplasts. J. Cell Biochem. 35: 225–234.

    CAS  Google Scholar 

  • Huang, L.-H., Farnet, CM., Erhlich, K.C., and Erhlich, M. (1982) Digestion of highly modified bacteriophage DNA by restriction endonucleases. Nuc. Acid. Res. 10: 1579–1591.

    Article  CAS  Google Scholar 

  • Huang, Y.-W., and Dennis, E.S. (1989) Factors influencing stable transformation of maize protoplasts by electroporation. Plant Cell Tiss. Org. Cult. 18: 281–296.

    Article  CAS  Google Scholar 

  • Ishida, Y, Saito, H., Ohta, S., Hiei, Y, Komari, T., and Kumashiro, T. (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nature Biotechnology 14: 745–750.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, D., Veit, B., and Hake, S. (1994) Expression of maize KNOTTEDl related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot. Development 120: 405–413.

    CAS  Google Scholar 

  • Jardinaud, M.F., Souvre, A., Alibert, G., and Beckett, M. (1995) uidA gene transfer and expression in maize microspores using the biolistic method. Protoplasma 187: 138–143.

    Article  CAS  Google Scholar 

  • Jefferson, R.A. (1987) Assaying chimeric genes in plants: The GUS gene fusion system. Plant Mol. Biol. Rep. 5: 387–405.

    Article  CAS  Google Scholar 

  • Johal, G.S., and Briggs, S.P. (1992) Reductase activity encoded by the HMl disease resistance gene in maize. Science 258: 985–987.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, E.S., Bartel, B., Seufert, W., and Varshavsky, A. (1992) Ubiquitin as a degradation signal. EMBO J. 11: 497–505.

    PubMed  CAS  Google Scholar 

  • Jongedijk, E., Tigelaar, H., Van Roekel, J.S.C., Bres-Vloemans, S.A., Dekker, I., Van Den Elzen, P.J.M., Cornelissen, B.J.C., and Melchers, L.S. (1995) Synergistic activity of chitinases and beta-l,3-glucanases enhances fungal resistance in transgenic tomato plants. Euphytica 85: 173–180.

    Article  CAS  Google Scholar 

  • Kaeppler, H.F., Gu, W., Somers, D.A., Rines, H.W., and Cockburn, A.F. (1990) Silicon carbide fiber-mediated DNA delivery into plant cells. Plant Cell Rep. 9: 415–418.

    Article  CAS  Google Scholar 

  • Kaeppler, H.F., Somers, D.A., Rines, H.W., and Cockburn, A.F. (1992) Silicon carbide fiber-mediated stable transformation of plant cells. Theor. Appl. Genet. 84: 560–566.

    Article  Google Scholar 

  • Kalderon, D., Roberts, B.L., Richardson, W.D., and Smith, A.E. (1984) A short amino acid sequence able to specify nuclear location. Cell 39: 499–509.

    Article  PubMed  CAS  Google Scholar 

  • Kao, C.Y., Cocciolone, S.M., Vasil, I.K., and McCarty, D.R. (1996) Localization and interaction of the cis-acting elements for abscisic acid, VIVIPAROUS 1, and light activation of the C1 gene of maize. Plant Cell 8: 1171–1179.

    PubMed  CAS  Google Scholar 

  • Kausch, A.P., Adams, T.R., Mangano, M., Zachwieja, S.J., Gordon-Kamm, W., Daines, R., Willets, N.G., Chambers, S.A., Adams, W., Jr., and Anderson, A. (1995) Effects of microprojectile bombardment on embryogenic suspension cell cultures of maize (Zea mays L.) used for genetic transformation. Planta 196: 501–509.

    Article  CAS  Google Scholar 

  • Kilby, N.J., Leyser, H.M.O., and Furner, I.J. (1992) Promoter methylation and progressive transgene inactivation in Arabidopsis. Plant Mol. Biol. 20: 103–112.

    Article  PubMed  CAS  Google Scholar 

  • Klein, T.M., Fromm, M., Weissinger, A., Tomes, D., Schaaf, S., Sletten, M., and Sanford, J.C. (1988a) Transfer of foreign genes into intact maize cells with high-velocity microprojectiles. Proc. Nat. Acad. Sci. USA 85: 4305–4309.

    Article  PubMed  CAS  Google Scholar 

  • Klein, T.M., Gradziel, T., Fromm, M.E., and Sanford, J.C. (1988b) Factors influencing gene delivery into Zea mays cells by high-velocity microprojectiles. Bio/Technology 6: 559–563.

    Article  CAS  Google Scholar 

  • Klein, T.M., Harper, E.C., Svab, Z., Sanford, J.C, Fromm, M.E., and Maliga, P. (1988c) Stable genetic transformation of intact Nicotiana cells by particle bombardment process. Proc. Nat. Acad. Sci. USA 85: 8502–8505.

    Article  PubMed  CAS  Google Scholar 

  • Klein, T.M., Kornstein, L., Sanford, J.C, and Fromm, M.E. (1989a) Genetic transformation of maize cells by particle bombardment. Plant Physiol. 91: 440–444.

    Article  PubMed  CAS  Google Scholar 

  • Klein, T.M., Roth, B.A., and Fromm, M.E. (1989b) Regulation of anthocyanin biosynthetic genes introduced into intact maize tissue by microprojectiles. Proc. Natl. Acad. Sci. USA 86: 6681–6685.

    Article  PubMed  CAS  Google Scholar 

  • Koziel, M.G., Beland, G.L., Bowman, C, Carezzi, N.B., Crenshaw, R., Crossland, L., Dawson, J., Desai, N., Hill, M., Kadwell, S., Launis, K., Lewis, K., Maddox, D., McPherson, K., Meghji, M.R., Merlin, E., Rhodes, R., Warren, G.W., Wright, M., and Evola, S.V. (1993) Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis, Bio/Technology 11: 194–200.

    Article  CAS  Google Scholar 

  • Kramer, C, DiMaio, J., Carswell, G.K., and Shillito, R.D. (1993) Selection of transformed protoplast-derived Zea mays colonies with phosphinothricin and a novel assay using the pH indicator chlorophenol red. Planta 190: 454–458.

    Article  CAS  Google Scholar 

  • Krautwig, B., Lazzeri, P.A., and Lorz, H. (1994) Influence of enzyme solution on protoplast culture and transient gene expression in maize (Zea mays L.). Plant Cell Tiss. Org. Cult. 39: 43–48.

    Article  CAS  Google Scholar 

  • Krebbers, E., Rompaey, Jv., and Vandekerchhove, J. (1992) Expression of modified seed storage proteins in transgenic plants. In: Hiatt, A. (ed.), Transgenic Plants: Fundamentals and Applications, pp. 37–60. M. Dekker, New York.

    Google Scholar 

  • Krol, A.R.vd., Mur, L.A., Beld, M., Mol, J.N.M., and Stuitje, A.R. (1990) Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell 2: 291–299.

    PubMed  Google Scholar 

  • Lamb, C.J., Rvals, J.A., Ward, E.R., and Dixon, R.A. (1993) Emerging strategies for enhancing crop resistance to microbial pathogens. Curr. Plant Sci. Biotech. Agrie. 15: 45–60.

    Article  CAS  Google Scholar 

  • Landsman, D., McBride, O.W., and Bustin, M. (1989) Human non-histone chromosomal protein HMG-17: identification, characterization, chromosome localization and RFLPs of a functional gene from the large multigene family. Nuc. Acids Res. 17: 2301–2314.

    Article  CAS  Google Scholar 

  • Langer, T., Lu, C, Echols, H., Flanagan, J., Hayer, M.K., and Hartl, F.U. (1992) Successive action of DnaK, DnaJ, and GroEL along the pathway of chaperone-mediated protein folding. Nature 36: 683–689.

    Article  Google Scholar 

  • Langridge, P., Brettschneider, R., Lazzeri, P., and Lorz, H. (1992) Transformation of cereals via Agrobacterium and the pollen pathway: a critical assessment. Plant J. 2: 631–638.

    Article  CAS  Google Scholar 

  • Larkin, J.C, Oppenheimer, D.G., Pollock, S., and Marks, M.D. (1993) Arabidopsis GLABROUSl gene requires downstream sequences for function. Plant Cell 5: 1739–1748.

    PubMed  CAS  Google Scholar 

  • Last, D.I., Brettell, R.I.S., Chamberlain, D.A., Chaudhury, A.M., Larkin, P.J., Marsh, E.L., Peacock, W.J., and Dennis, E.S. (1991) pEMU: an improved promoter for gene expression in cereal cells. Theor. Appl. Genet. 81: 581–588.

    CAS  Google Scholar 

  • Laursen, CM., Krzyzek, R.A., Flick, C.E., Anderson, P.C., and Spencer, T.M. (1994) Production of fertile transgenic maize by electroporation of suspension culture cells. Plant Mol. Biol. 24: 51–61.

    Article  PubMed  CAS  Google Scholar 

  • Leader, D., Connelly, S., Filipowicz, W., Waugh, R., and Brown, J.W.S. (1993) Differential expression of U5snRNA gene variants in maize (Zea mays) protoplasts. Plant Mol. Biol. 21: 133–143.

    Article  PubMed  CAS  Google Scholar 

  • Leah, R., Tommerup, H., Svendsen, I., and Mundy, J. (1991) Biochemical and molecular characterization of three barley seed proteins with antifungal properties. J. Biol. Chem. 266: 1564–1573.

    PubMed  CAS  Google Scholar 

  • Leemans, J. (1992) Genetic engineering for fertility control. J. Cell Biochem. Suppl. 16F: 203.

    Google Scholar 

  • Li, W., Nagaraja, S., Delcuve, G.P., Hendzel, M.J., and Davie, J.R. (1993) Effects of histone acetylation, ubiquitination and variants on nucleosome stability. Biochem. J. 296: 737–744.

    PubMed  CAS  Google Scholar 

  • Liberek, K., Georgopoulos, C, and Zylicz, M. (1988) Role of the Escherichia coli DnaK and DnaJ heat shock proteins in the initiation of bacteriophage DNA replication. Proc. Nat. Acad. Sci. USA 85: 6632–6636.

    Article  PubMed  CAS  Google Scholar 

  • Liberek, K., Marszalek, J., Ang, D., Georgopoulos, C, and Zlicz, M. (1991) Escherichia coli DnaJ and GrpE heat shock proteins jointly stimulate ATPase activity of DnaK. Proc. Nat. Acad. Sci. USA 88: 2874–2878.

    Article  PubMed  CAS  Google Scholar 

  • Lloyd, A.M., and Davis, R.W. (1994) Functional expression of the yeast FLP/FRT site-specific recombination system in Nicotiana tabacum. Mol. Gen. Genet. 242: 653–657.

    Article  PubMed  CAS  Google Scholar 

  • Loeb, T.A., and Reynolds, T.L. (1994) Transient expression of the uidA gene in pollen embryoids of wheat following microprojectile bombardment. Plant Sci. 104: 81–91.

    Article  CAS  Google Scholar 

  • Logie, C., and Stewart, A.F. (1995) Ligand-regulated site-specific recombination. Proc. Nat. Acad. Sci. USA 92: 5940–5944.

    Article  PubMed  CAS  Google Scholar 

  • Lowe, K., Bowen, B., Hoerster, G., Ross, M., Bond, D., Pierce, D., and Gordon-Kamm, B. (1995) Germline transformation of maize following manipulation of chimeric shoot meristems. Bio/Technology 13: 677–682.

    Article  CAS  Google Scholar 

  • Lowe, K., Ross, M., Sandahl, G., Miller, M., Hoerster, G., Church, L., Tagliani, L., Bond, D. and Gordon-Kamm, W. (1997) Transformation of the maize apical meristem: Transgenic sector reorganization and germline transmission. In: Tsaftaris, A.S. (ed.), Genetics, Biotechnology and Breeding of Maize and Sorghum, pp. 94–97, Royal Society of Chemistry, Cambridge.

    Google Scholar 

  • Lu, G., and Feri, R.J. (1992) Site-specific oligodeoxynucleotide binding to maize Adh1 gene promoter represses Adhl-GUS gene expression in vivo. Plant Mol. Biol. 19: 715–723.

    Article  PubMed  CAS  Google Scholar 

  • Ludwig, S.R., Bowen, B., Beach, L., and Wessler, S.R. (1990) A regulatory gene as a novel visible marker for maize transformation. Science 247: 449–450.

    Article  PubMed  CAS  Google Scholar 

  • Luehrsen, K.R., and Walbot, V. (1992) Insertion of non-intron sequence into maize introns interferes with splicing. Nuc. Acids Res. 20: 5181–5187.

    Article  CAS  Google Scholar 

  • Lusardi, M.C., Neuhaus-Uri, G., Potrykus, I., and Neuhaus, G. (1994) An approach towards genetically engineered cell fate mapping in maize using the Lc gene as a visible marker: Transactivation capacity of Lc vectors in differentiated maize cells and microinjection of Lc vectors into somatic embryos and shoot apical meristems. Plant J. 5: 571–582.

    Article  PubMed  CAS  Google Scholar 

  • Lyznik, L.A., Hirayama, L., Rao, K.V., Abad, A., and Hodges, T.K. (1995) Heat-inducible expression of FLP gene in maize cells. Plant J. 8: 177–186.

    Article  PubMed  CAS  Google Scholar 

  • Lyznik, L.A., McGee, J.D., Tung, P.Y., Bennetzen, J.L., and Hodges, T.K. (1991a) Homologous recombination between plasmid DNA molecules in maize protoplasts. Mol. Gen. Genet. 230: 209–218.

    Article  PubMed  CAS  Google Scholar 

  • Lyznik, L.A., Peng, J.Y., and Hodges, T.K. (1991b) Simplified procedure for transient transformation of plant protoplasts using polyethylene glycol treatment. Biotechniques 10: 294–300.

    PubMed  CAS  Google Scholar 

  • Lyznik, L.A., Mitchell, J.C, Hirayama, L., and Hodges, T.K. (1993) Activity of yeast FLP recombinase in maize and rice protoplasts. Nuc. Acids Res. 21: 969–975.

    Article  CAS  Google Scholar 

  • Lyznik, L.A., Rao, K.V., and Hodges, T.K. (1996) FLP-mediated recombination of FRT sites in the maize genome. Nuc. Acids Res. 24: 3784–3789.

    Article  CAS  Google Scholar 

  • Lyznik, L.A., Ryan, R.D., Ritchie, S.W., and Hodges, T.K. (1989) Stable co-transformation of maize protoplasts with gusA and neo genes. Plant Mol. Biol. 13: 151–161.

    Article  PubMed  CAS  Google Scholar 

  • Maas, C., Schaal, S., and Werr, W. (1990) A feedback control element near the transcription start site of the maize Shrunken gene determines promoter activity. EMBO J. 9: 3447–3452.

    PubMed  CAS  Google Scholar 

  • Maas, C., Laufs, J., Grant, S., Korfhage, C, and Werr, W. (1991) The combination of a novel stimulatory element in the first exon of the maize Shrunken-1 gene with the following intron 1 enhances reporter gene expression up to 1000-fold. Plant Mol. Biol. 16: 199–207.

    Article  PubMed  CAS  Google Scholar 

  • Maas, C, and Werr, W. (1989) Mechanism and optimized conditions for PEG mediated DNA transfection into plant protoplasts. Plant Cell Rep. 8: 148–151.

    Article  CAS  Google Scholar 

  • Maessen, G.D.F. (1997) Genomic stability and stability of expression in genetically modified plants. Acta Bot. Neerl. 46: 3–24.

    CAS  Google Scholar 

  • Malki, A., Hughes, P., and Kohiyama, M. (1991) In vitro roles of Escherichia coli DnaJ and DnaK heat shock proteins in the replication of oriC plasmids. Mol. Gen. Genet. 225: 420–446.

    Article  PubMed  CAS  Google Scholar 

  • Mariani, C, de Beuckeleer, M., Truettner, J., Leemans, J., and Goldberg, R.B. (1990) Induction of male sterility in plants by a chimaeric ribonuclease gene. Nature 347: 737–741.

    Article  CAS  Google Scholar 

  • Mariani, C, Gossele, V., de Beuckeleer, M., de Block, M., Goldberg, R.B., de Greef, W., and Leemans, J. (1992) A chimaeric ribonuclease-inhibitor gene restores fertility to male sterile plants. Nature 357: 384–387.

    Article  CAS  Google Scholar 

  • Marrs, K.A., and Sinibaldi, R.M. (1997) Deletion analysis of the maize hsp82, hsp81, and hspl7.9 promoters in maize and transgenic tobacco: contributions of individual heat shock elements and recognition by distinct protein factors during both heat shock and development. Maydica 42: 211–226.

    Google Scholar 

  • Marshallsay, C, Connelly, S., and Filipowicz, W. (1992) Characterization of the U3 and U6 snRNA genes from wheat: U3 snRNA genes in monocot plants are transcribed by RNA polymerase III. Plant Mol. Biol. 19: 973–983.

    Article  PubMed  CAS  Google Scholar 

  • Martiensen, R. (1996) Epigenetic phenomena: Paramutation and gene silencing in plants. Curr. Opin. Biol. 6: 810–813.

    Google Scholar 

  • Mascarenhas, D., Mettler, I.J., Pierce, D.A., and Lowe, H.W. (1990) Intron-mediated enhancement of heterologous gene expression in maize. Plant Mol. Biol. 15: 913–920.

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka, M., Ichikawa, H., Saito, A., Tada, Y., Fujimura, T., and Kano-Murakami, Y. (1993) Expression of a rice homeobox gene causes altered morphology of transgenic plants. Plant Cell 5: 1039–1048.

    PubMed  CAS  Google Scholar 

  • Matzke, M.A., and Matzke, A.J.M. (1993) Genomic imprinting in plants: parental effects and trans-inactivating phenomena. Ann. Rev. Plant Physiol. Plant Mol. Biol. 44: 53–76.

    Article  CAS  Google Scholar 

  • Matzke, M.A., Mazke, A.J.M., and Mittelsten-Scheid, O. (1994a) Inactivation of repeated genes-DNA-DNA interaction? In: Paszkowski, J. (ed.), Homologous Recombination and Gene Silencing in Plants, pp. 271–307. Kluwer, Dortrecht.

    Chapter  Google Scholar 

  • Matzke, A.J.M., Neuhuber, F., Park, Y.-.D, Ambras, P., and Matzke, M.A. (1994b) Homology-dependent gene silencing in transgenic plants: epistatic silencing loci contain multiple copies of methylated transgenes. Mol. Gen. Genet. 244: 219–229.

    Article  PubMed  CAS  Google Scholar 

  • McCabe, D.E., and Martinell, B.J. (1993) Transformation of elite cotton cultivars via particle bombardment of meristems. Bio/Technology 11: 596–598.

    Article  Google Scholar 

  • McClelland, M., and Nelson, N. (1985) The effect of site specific methylation on restriction endonuclease digestion. Nuc. Acids Res. 13: R201–R207.

    Article  Google Scholar 

  • McElroy, D., Rothenberg, M., Reece, K.S., and Wu, R. (1990a) Characterization of the rice (Oryza sativa) actin gene family. Plant Mol. Biol. 15: 257–268.

    Article  PubMed  CAS  Google Scholar 

  • McElroy, D., Zhang, W., Cao, J., and Wu, R. (1990b) Isolation of an efficient actin promoter for use in rice transformation. Plant Cell 2: 163–171.

    PubMed  CAS  Google Scholar 

  • McGall, G., Labadie, J., Brock, P., Wallraff, G., Nguyen, T., and Hinsberg, W. (1996) Light-directed synthesis of high-density oligonucleotide arrays using semiconductor photoresists. Proc. Nat. Acad. Sci. USA 93: 13555–13560.

    Article  PubMed  CAS  Google Scholar 

  • Meeley, R.B., Johal, G.S., Briggs, S.P., and Walton, J.D. (1992) A biochemical phenotype for a disease resistance gene of maize. Plant Cell 4: 71–77.

    PubMed  CAS  Google Scholar 

  • Menossi, M., Martinez-Izquierdo, J.A., and Puigdomenech, P. (1997) Promoter tissue specific activity and ethylene control of the gene coding for the maize hydroxyproline-rich glycoprotein in maize cells transformed by particle bombardment. Plant Sci. 125: 189–200.

    Article  CAS  Google Scholar 

  • Mett, V.L., Lockhead, L.P., and Reynolds, P.H.S. (1993) Copper-controllable gene expression system for whole plants. Proc. Nat. Acad. Sci. USA 90: 4567–4571.

    Article  PubMed  CAS  Google Scholar 

  • Meyer, P., and Saedler, H. (1996) Homology-dependent gene silencing in plants. Ann. Rev. Plant Physiol. Plant Molec. Biol. 47: 23–48.

    Article  CAS  Google Scholar 

  • Morell, M.K., Rahman, S., Abrahams, S.L., and Appels, R. (1995) The biochemistry and molecular biology of starch synthesis in cereals. Aust. J. Plant Physiol. 22: 647–660.

    Article  CAS  Google Scholar 

  • Morocz, S., Donn, G., Nemeth, J., and Dudits, D. (1990) An improved system to obtain fertile régénérants via maize protoplasts isolated from a highly embryogenic suspension culture. Theor. Appl. Genet. 80: 721–726.

    Article  Google Scholar 

  • Morrow, B., and Kucherlapati, R. (1993) Gene targeting in mammalian cells by homologous recombination. Curr. Opin. Biotech. 4: 577–582.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, J.T., and Lagarias, J.C. (1997) The phytofluors: a new class of fluorescent protein probes. Curr. Biol. 7: 870–876.

    Article  PubMed  CAS  Google Scholar 

  • Murry, L.E., Elliott, L.G., Capitant, S.A., West, J.A., Hanson, K.K., Scarafia, L., Johnston, S., Deluca-Flaherty, C, Nichols, S., and Cunanan, D. (1993) Transgenic corn plants expressing MDMV strain-B coat protein are resistant to mixed infections of maize dwarf mosaic virus and maize chlorotic mottle virus. Bio/Technology 11: 1559–1564.

    Article  PubMed  CAS  Google Scholar 

  • Narberhaus, F., Giebeler, K., and Bahl, H. (1992) Molecular characterization of the dnaK gene region of Clostridium acetobutylicum, including grpE, dnaJ, and a new heat shock gene. J. Bact. 174: 3290–3299.

    PubMed  CAS  Google Scholar 

  • Negrutiu, I., Shillito, R., Potrykus, I., Biasini, G., and Sala, F. (1987) Hybrid genes in the analysis of transformation conditions. I. Setting up a simple method for direct gene transfer in plant protoplasts. Plant Mol. Biol. 8: 363–373.

    Article  CAS  Google Scholar 

  • Neuhaus, G., Spangenberg, G., Mittelsten-Scheid, O., Scheid, O.M., and Schweiger, H.-G. (1987) Transgenic rapeseed plants obtained by the microinjection of DNA into microspore-derived embryoids. Theor. Appl. Genet. 75: 30–36.

    Article  Google Scholar 

  • Neuhaus-Url, G., Lusardi, M.C., Imoberdorf, R., and Neuhaus, G. (1994) Integrative and self-replicating Le vectors and their transactivation capacity in maize callus protoplasts. Plant Cell Rep. 13: 564–569.

    Article  CAS  Google Scholar 

  • Oard, J.H., Paige, D.F., Simmonds, J.A., and Gradziel, T.M. (1990) Transient gene expression in maize, rice, and wheat cells using an airgun apparatus. Plant Physiol. 92: 334–339.

    Article  PubMed  CAS  Google Scholar 

  • Odell, J., Caimi, P., Sauer, B., and Russell, S. (1990) Site-directed recombination in the genome of transgenic tobacco. Mol. Gen. Genet. 223: 369–378.

    Article  PubMed  CAS  Google Scholar 

  • Odell, J.T., Hoopes, J.L., and Vermerris, W. (1994) Seed-specific gene activation mediated by the Cre/lox site-specific recombination system. Plant Physiol. 106: 447–458.

    Article  PubMed  CAS  Google Scholar 

  • Odell, J.T., Nagy, F., and Chua, N.-H. (1985) Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313: 810–812.

    Article  PubMed  CAS  Google Scholar 

  • Odell, J.T., and Russell, S.H. (1994) Use of site-specific recombination systems in plants. In: Paszkowski, J. (ed.), Homologous recombination and gene silencing in plants, pp. 219–270. Kluwer Acad. Publishers, Netherlands.

    Chapter  Google Scholar 

  • Ohlrogge, J.B., and Jaworski, J.G. (1997) Regulation of fatty acid synthesis. Ann. Rev. Plant Physiol. Plant Mol. Biol. 48: 109–136.

    Article  CAS  Google Scholar 

  • Ohta Y, (1986) High-efficiency genetic transformation of maize by a mixture of pollen and exogenous DNA. Proc. Nat. Acad. Sci. USA 83: 715–719.

    Article  PubMed  CAS  Google Scholar 

  • O’Keefe, D.P., Tepperman, J.M., Dean, C, Leto, K.J., Erbes, D.L., and Odell, J.T. (1994) Plant expression of a bacterial cytochrome P450 that catalyzes activation of a sulfonylurea pro-herbicide. Plant Physiol. 105: 473–482.

    PubMed  Google Scholar 

  • Olive, M.R., Walker, J.C, Singh, K., Dennis, E.S., and Peacock, W.J. (1990) Functional properties of the anaerobic responsive element of the maize Adhl gene. Plant Mol. Biol. 15: 593–604.

    Article  PubMed  CAS  Google Scholar 

  • Omirulleh, S., Abraham, M., Golovkin, M., Stefanov, I., Karabaev, M.K., Mustardy, L., Morocz, S., and Dudits, D. (1993) Activity of a chimeric promoter with the doubled CaMV 35S enhancer element in protoplast-derived cells and transgenic plants in maize. Plant Mol. Biol. 21: 415–428.

    Article  PubMed  CAS  Google Scholar 

  • Ow, D., Day, C, Holappa, L., Lee, E., Kobayashi, J., Albert, H., and Koshinsky, H. (1997) Expression of site-specific transgenes. Vth International Congress of Plant Molecular Biology, Abstract #210.

    Google Scholar 

  • Pang, S.Z., DeBoer, D.L., Wan, Y, Ye, G., Layton, J.G., Neher, M.K., Armstrong, C.L., Fry, J.E., Hinchee, M.A.W., and Fromm, M.E. (1996) An improved green fluorescent protein gene as a vital marker in plants. Plant Physiol. 112: 893–900.

    Article  PubMed  CAS  Google Scholar 

  • Pareddy, D., Petolino, J., Skokut, T., Hopkins, N., Miller, M., Welter, M., Smith, K., Clayton, D., Pescitelli, S., and Gould, A. (1997) Maize transformation via helium blasting. Maydica. 42: 143–154.

    Google Scholar 

  • Pescitelli, S.M., and Sukhapinda, K. (1995) Stable transformation via electroporation into maize type II callus and regeneration of fertile transgenic plants. Plant Cell Rep. 14: 712–716.

    Article  CAS  Google Scholar 

  • Planckaert, F., and Walbot, V. (1989) Transient gene expression after electroporation of protoplasts derived from embryogénie maize callus. Plant Cell Rep. 8: 144–147.

    Article  CAS  Google Scholar 

  • Potrykus, I. (1989) Gene transfer to cereals: an assessment. Trends Biotechnol. 7: 269–272.

    Article  Google Scholar 

  • Potrykus, I. (1990a) Gene transfer to cereals: an assessment. Bio/Technology 8: 535–542.

    Article  CAS  Google Scholar 

  • Potrykus, I. (1990b) Gene transfer to plants: assessment and perspectives. Physiol. Plant 79: 125–134.

    Article  CAS  Google Scholar 

  • Potrykus, I. (1991) Gene transfer to plants: assessment of published approaches and results. Ann. Rev. Plant Physiol. Plant Mol. Biol. 42: 205–225.

    Article  CAS  Google Scholar 

  • Potrykus, I., Saul, M.W., Petruska, J., Paszkowski, J., and Shillito, R.D. (1985) Direct gene transfer to cells of a graminaceous monocot. Mol. Gen. Genet. 199: 183–188.

    Article  CAS  Google Scholar 

  • Prasher, D.C., Eckenrode, V.K., Ward, W.W., Prendergast, F.G., and Cormier, M.J. (1992) Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111: 229–233.

    Article  PubMed  CAS  Google Scholar 

  • Preisig-Muller, R., and Kindl, H. (1993) Plant dnaJ homologue: molecular cloning, bacterial expression, and expression analysis in tissues of cucumber seedlings. Arch. Biochem. Biophys. 305: 30–37.

    Article  PubMed  CAS  Google Scholar 

  • Puchta, H., and Hohn, B. (1996) From centiMorgans to base pairs: Homologous recombination in plants. Trends Plant Sci. 1: 340–348.

    Google Scholar 

  • Qiang, B.Q., McClelland, M., Poddar, S., Spokauskas, A., and Nelson, M. (1990) The apparent specificity of Noti 5′-GCGGCCGC-3′ is enhanced by M. fnudii or M. bepi methyltransferases 5′-methyl-CGCG-3′ cutting bacterial chromosomes into a few large pieces. Gene 88: 101–106.

    Article  PubMed  CAS  Google Scholar 

  • Quarrie, S.A. (1996) New molecular tools to improve the efficiency of breeding for increased drought resistance. Plant Growth Regul. 20: 167–178.

    Article  CAS  Google Scholar 

  • Quayle, T., and Feix, G. (1992) Functional analysis of the-300 region of maize zein genes. Mol. Gen. Genet. 231: 369–374.

    Article  PubMed  CAS  Google Scholar 

  • Quayle, T.J.A., Hetz, W., and Feix, G. (1991) Characterization of a maize endosperm culture expressing zein genes and its use in transient transformation assays. Plant Cell Rep. 9: 544–548.

    Article  CAS  Google Scholar 

  • Rao, A.G., and Flynn, P. (1990) A quantitative assay for beta-D-glucuronidase (GUS) using microtiter plates. Biotechniques 8: 38–40.

    PubMed  CAS  Google Scholar 

  • Rasmussen, J.L., Kikkert, J.R., Roy, M.K., and Sanford, J.C. (1994) Biolistic transformation of tobacco and maize suspension cells using bacterial cells as microprojectiles. Plant Cell Rep. 13: 212–217.

    Article  CAS  Google Scholar 

  • Reggiardo, M.I., Luis-Arana, J., Orsaria, L.M., Permingeat, H.R., Spitteler, M.A., and Vallejos, R.H. (1991) Transient transformation of maize tissues by microparticle bombardment. Plant Sci. 75: 237–244.

    Article  CAS  Google Scholar 

  • Register, J.C, Peterson, D.J., Bell, P.J., Bullock, W.P., Evans, I.J., Frame, B., Greenland, A.J., Higgs, N.S., Jepson, I., Jiao, S.P., Lewnau, C.J., Sillick, J.M., and Wilson, H.M. (1994) Structure and function of selectable and non-selectable transgenes in maize after introduction by particle bombardment. Plant Mol. Biol. 25: 951–961.

    Article  PubMed  CAS  Google Scholar 

  • Reiss, B., Klemm, M., Kosak, H., and Schell, J. (1996) RecA protein stimulates homologous recombination in plants. Proc. Nat. Acad. Sci. USA 93: 3094–3098.

    Article  PubMed  CAS  Google Scholar 

  • Restrepo, M.A., Freed, D.D., and Carrington, J.C. (1990) Nuclear transport of plant potyviral proteins. Plant Cell 10: 987–998.

    Google Scholar 

  • Revet, B.M., Sena, E.P., and Zarling, D.A. (1993) Homologous DNA targeting with RecA protein-coated short DNA probes and electron microscope mapping on linear duplex molecules. J. Mol. Biol. 232: 779–791.

    Article  PubMed  CAS  Google Scholar 

  • Rhodes, CA., Lowe, K.S., and Ruby, K.L. (1988a) Plant regeneration from protoplasts isolated from embryogenic maize cell cultures. Bio/Technology 6: 56–60.

    Article  Google Scholar 

  • Rhodes, CA., Pierce, D.A., Mettler, I.J., Mascarenhas, D., and Detmer, J.J. (1988b) Genetically transformed maize plants from protoplasts. Science 240: 204–207.

    Article  PubMed  CAS  Google Scholar 

  • Rigau, J., Capellades, M., Montoliu, L., Torres, M.A., Romera, C, Martinez-Izquierdo, J.A., Tagu, D., and Puigdomenech, P. (1993) Analysis of maize alpha-tubulin gene promoter by transient expression and in transgenic tobacco plants. Plant Journal 4: 1043–1050.

    Article  CAS  Google Scholar 

  • Ritchie, S.W., Lui, C.-N., Sellmer, J.C, Kononowicz, H., Hodges, T.K., and Gelvin, S.B. (1993) Agrobacterium tumefaciens-mediated expression of gusA in maize tissues. Transgenic Res. 2: 252–265.

    Article  CAS  Google Scholar 

  • Rizzuto, R., Brini, M., Pizzo, P., Murgia, M., and Pozzan, T. (1995) Chimeric green fluorescent protein as a tool for visualizing subcellular organelles in living cells. Curr. Biol. 5: 635–642.

    Article  PubMed  CAS  Google Scholar 

  • Rogers, J.C, and Rogers, S.W. (1995) Comparison of the effects of N-6-methyldeoxyadenosine and N-5-methyldeoxycytosine on transcription from nuclear gene promoters in barley. Plant J. 7: 221–233.

    Article  PubMed  CAS  Google Scholar 

  • Roth, B.A., Goff, S.A., Klein, T.M., and Fromm, M.E. (1991) Cl-and R-dependent expression of the maize Bzl gene requires sequences with homology to mammalian myb and myc binding sites. Plant Cell 3: 317–325.

    PubMed  CAS  Google Scholar 

  • Russell, D.A., and Fromm, M.E. (1997) Tissue-specific expression in transgenic maize of four endosperm promoters from maize and rice. Transgenic Res. 6: 157–168.

    Article  PubMed  CAS  Google Scholar 

  • Russell, D.A., DeBoer, D.L., Stark, D.M., Preiss, J., and Fromm, M.E. (1993) Plastid targeting of E. coli beta-glucuronidase and ADP-glucose pyrophosphorylase in maize (Zea mays L.) cells. Plant Cell Rep. 13: 24–27.

    Article  CAS  Google Scholar 

  • Sabri, N., Pelissier, B., and Teissie, J. (1996) Transient and stable electrotransformations of intact Black Mexican Sweet maize cells are obtained after preplasmolysis. Plant Cell Rep. 15: 924–928.

    Article  CAS  Google Scholar 

  • Sadowski, P.D. (1995) The Flp recombinase of the 2-microns plasmid of Saccharomyces cerevisiae. Prog. Nuc. Acid Res. Mol. Biol. 51: 53–91.

    Article  CAS  Google Scholar 

  • Sainz, M.B., Grotewold, E., and Chandler, V.L. (1997) Evidence for direct activation of an anthocyanin promoter by the maize C1 protein and comparison of DNA binding by related Myb domain proteins. Plant Cell 9: 611–625.

    PubMed  CAS  Google Scholar 

  • Sanford, J.C, Klein, T.M., Wolf, E.D., and Allen, N. (1987) Delivery of substances into cells and tissues using a particle bombardment process. Part. Sci. Tech. 5: 27–37.

    Article  CAS  Google Scholar 

  • Sardana, R., Dukiandjiev, S., Giband, M., Cheng, X.Y., Cowan, K., Sauder, C, and Altosaar, I. (1996) Construction and rapid testing of synthetic and modified toxin gene sequences CrylA (b&c) by expression in maize endosperm culture. Plant Cell Rep. 15: 677–681.

    Article  CAS  Google Scholar 

  • Sathasivan, K., Haughn, G.W., and Murai, N. (1991) Molecular basis of imidazolinone herbicide resistance in Arabidopsis thaliana var Columbia. Plant Physiol. 97: 1044–1050.

    Article  PubMed  CAS  Google Scholar 

  • Schlake, T., and Bode, J. (1994) Use of mutated FLP recognition target (FRT) sites for the exchange of expression cassettes at defined chromosomal loci. Biochemistry 33: 12746–12751.

    Article  PubMed  CAS  Google Scholar 

  • Schledzewski, K., and Mendel, R.R. (1994) Quantitative transient gene expression — comparison of the promoters for maize polyubiquitinl, rice actin 1, maize-derived Emu and CaMV 35S in cells of barley, maize and tobacco. Transgenic Res. 3: 249–255.

    Article  CAS  Google Scholar 

  • Scofield, S.R., Jones, D.A., Harrison, K., and Jones, J.D.G. (1994) Chloroplast targeting of spectinomycin adenyltransferase provides a cell-autonomous marker for monitoring transposon excision in tomato and tobacco. Mol. Gen. Genet. 244: 189–196.

    Article  PubMed  CAS  Google Scholar 

  • Scowcroft, W.R., and Larkin, P.J. (1988) Somaclonal variation. In: Gregory, B., Marsh, J. (eds), Applications of Plant Cell and Tissue Culture, pp. 21–35. Wiley, Chichester, Sussex, UK.

    Google Scholar 

  • Scowcroft, W.R., Ryan, S.A., Brettel, R.I.S., and Larkin, P.J. (1985) Somaclonal variation in crop improvement. Biotechnology in international agricultural research, Proc. Inter-Center Sem. Internat. Agric. Res. Cent. (IARCs) and Biotech, pp. 99–109. International Rice Research Institute, Manila, Philippines.

    Google Scholar 

  • Sena, E.P., and Zarling, D.A. (1993) Targeting in linear DNA duplexes with two complementary probe strands for hybrid stability. Nature Genetics 3: 365–371.

    Article  PubMed  CAS  Google Scholar 

  • Senecoff, J.F., Rossmeissl, P.J., and Cox, M.M. (1988) DNA recognition by the FLP recombinase of the yeast 2 mu plasmid. A mutational analysis of the FLP binding site. J. Mol. Biol. 201: 405–421.

    Article  PubMed  CAS  Google Scholar 

  • Sheen, J. (1991) Molecular mechanisms underlying the differential expression of maize pyruvate, orthophosphate dikinase genes. Plant Cell 3: 225–245.

    PubMed  CAS  Google Scholar 

  • Sheen, J., Hwang, S., Niwa, Y, Kobayashi, H., and Galbraith, D.M. (1995) Green-fluorescent protein as a new vital marker in plant cells. Plant J. 8: 777–784.

    Article  PubMed  CAS  Google Scholar 

  • Shen, W.H., and Hohn, B. (1994) Amplification and expression of the beta-glucuronidase gene in maize plants by vectors based on maize streak virus. Plant J. 5: 227–236.

    Article  CAS  Google Scholar 

  • Sheridan, W.F. (1975) Growth of corn cells in culture. J. Cell Biol. 67: 396a.

    Google Scholar 

  • Sheridan, W.F. (1982) Black Mexican Sweet corn: its use for tissue culture. In: Sheridan, W.F. (ed.) Maize for Biological Research, pp. 385–387, University of North Dakota Press, Grand Forks.

    Google Scholar 

  • Shieh, M.W., Wessler, S.R., and Raikhel, N.V. (1993) Nuclear targeting of the maize-R protein requires two nuclear localization sequences. Plant Physiol. 101: 353–361.

    Article  PubMed  CAS  Google Scholar 

  • Shillito, R.D., Saul, M.W., Paszkowski, J., Muller, M., and Potrykus, I. (1985) High efficiency direct gene transfer to plants. Bio/Technology 3: 1099–1103.

    Article  Google Scholar 

  • Sieburth, L.E., and Meyerowitz, E.M. (1997) Molecular dissection of the AGAMOUS control region shows that cis elements for spatial regulation are located intragenically. Plant Cell 9: 355–365.

    PubMed  CAS  Google Scholar 

  • Sinha, N.R., Williams, R.E., and Hake, S. (1993) Overexpression of the maize horneo box gene, KNOTTED-1, causes a switch from determinate to indeterminate cell fates. Gene Dev. 7: 787–795.

    Article  PubMed  CAS  Google Scholar 

  • Smulders, M.J.M., Rus-Kortekaas, W., and Vosman, B. (1995) Tissue culture-induced DNA methylation polymorphisms in repetitive DNA of tomato calli and regenerated plants. Theor. Appl. Genet. 91: 1257–1264.

    Article  CAS  Google Scholar 

  • Somers, D.A., and Anderson, P.C. (1994) In vitro selection for herbicide tolerance in maize. Biotech. Agric. 25: 293–313.

    CAS  Google Scholar 

  • Songstad, D.D., Armstrong, C.L., Petersen, W.L., Hairston, B., and Hinchee, M.A.W. (1996) Production of transgenic maize plants and progeny by bombardment of Hi-II immature embryos. In Vitro Cell. Dev. Biol. 32P: 179–183.

    Google Scholar 

  • Songstad, D.D., Halaka, F.G., DeBoer, D.L., Armstrong, C.L., Hinchee, M.A.W., Ford-Santino, C.G., Brown, S.M., Fromm, M.E., and Horsch, R.B. (1993) Transient expression of GUS and anthocyanin constructs in intact maize immature embryos following electro-poration. Plant Cell Tis. Org. Cult. 33: 195–201.

    Article  CAS  Google Scholar 

  • Spencer, T.M., Gordon-Kamm, W.J., Daines, R.J., Start, WG., and Lemaux, P.G. (1990) Bialaphos selection of stable transformants from maize cell culture. Theor. Appl. Genet. 79: 625–631.

    Article  CAS  Google Scholar 

  • Spencer, T.M., O’Brien, J.V., Start, W.G., Adams, T.R., Gordon-Kamm, W.J., and Lemaux, P.G. (1992) Segregation of transgenes in maize. Plant Mol. Biol. 18: 201–210.

    Article  PubMed  CAS  Google Scholar 

  • Stapleton, G., Somma, M.P., and Lavia, P. (1993) Cell type-specific interactions of transcription factors with a housekeeping promoter in vivo. Nucl. Acids Res. 21: 2465–2471.

    Article  PubMed  CAS  Google Scholar 

  • Sternberg, N., and Hamilton, D. (1981) Bacteriophage P1 site-specific recombination. I. Recombination between loxP sites. J. Mol. Biol. 150: 467–486.

    Article  PubMed  CAS  Google Scholar 

  • Stirpe, F., Barbieri, L., Battelli, M.G., Soria, M., and Lappi, D.A. (1992) Ribosome-inacti-vating proteins from plants: present status and future prospects. Bio/Technology 10: 405–412.

    Article  PubMed  CAS  Google Scholar 

  • Sudakin, V., Ganoth, D., Dahan, A., Heller, H., Hershko, J., Luca, F.C., Ruderman, J.V., and Hershko, A. (1995) The cyclosome, a large complex containing cyclin-selective ubiquitin ligase activity, targets cyclins for destruction at the end of mitosis. Mol. Biol. Cell 6: 185–197.

    PubMed  CAS  Google Scholar 

  • Sukhapinda, K., Kozuch, M.E., Rubin-Wilson, B., Ainley, W.M., and Merlo, D.J. (1993) Transformation of maize (Zea mays L.) protoplasts and regeneration of haploid transgenic plants. Plant Cell Rep. 13: 63–68.

    Article  CAS  Google Scholar 

  • Takimoto, I., Christensen, A.H., Quail, P.H., Uchimiya, H., and Toki, S. (1994) Non-systemic expression of a stress-responsive maize polyubiquitin gene (Ubi-1) in transgenic rice plants. Plant Mol. Biol. 26: 1007–1012.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, M.G., Vasil, V, and Vasil, I.K. (1993) Enhanced GUS gene expression in cereal/grass cell suspensions and immature embryos using the maize ubiquitin-based plasmid pAHC25. Plant Cell Rep. 12: 491–495.

    CAS  Google Scholar 

  • Toki, S., Takamatsu, S., Nojiri, C, Ooba, S., Anzai, H., Iwata, M., Christensen, A.H., Quail, P.H., and Uchimya, H. (1992) Expression of a maize ubiquitin gene promoter-bar chimeric gene in transgenic rice plants. Plant Physiol. 100: 1503–1507.

    Article  PubMed  CAS  Google Scholar 

  • Toriyama, K., Arimoto, Y., Uchimaya, H., and Hinata, K. (1988) Transgenic rice plants after direct gene transfer into protoplasts. Bio/Technology 6: 1072–1074.

    Article  CAS  Google Scholar 

  • Torrent, M., Alvarez, I., Geli, M.I., Dalcol, I., and Ludevid, D. (1997) Lysine-rich modified y-zeins accumulate in protein bodies of transiently transformed maize endosperms. Plant Mol. Biol. 34: 139–149.

    Article  PubMed  CAS  Google Scholar 

  • Uchimiya, H., Iwata, M., Nojiri, C, Samarajeewa, P.K., Takamatsu, S., Ooba, S., Anzai, H., Christensen, A.H., Quail, P.H., and Toki, S. (1993) Bialaphos treatment of transgenic rice plants expressing a bar gene prevents infection by the sheath blight pathogen (Rhizoctonia solani). Bio/Technology 11: 835–836.

    Article  CAS  Google Scholar 

  • Ueda, T., and Messing, J. (1991) A homologous expression system for cloned zein genes. Theor. Appl. Genet. 82: 93–100.

    Article  CAS  Google Scholar 

  • Unger, E., Parsons, R.L., Schmidt, R.J., Bowen, B., and Roth, B.A. (1993) Dominant negative mutants of opaque2 suppress transactivation of a 22-kD zein promoter by opaque2 in maize endosperm cells. Plant Cell. 5: 831–841.

    PubMed  CAS  Google Scholar 

  • Vaeck, M., Reynaerts, A., Hofte, H., Jansens, S., De Beuckeleer, M., Dean, C, Zabeau, M., Van Montagu, M., and Leemans, J. (1987) Transgenic plants protected from insect attack. Nature 328: 33–37.

    Article  CAS  Google Scholar 

  • Vain, P., McMullen, M.D., and Finer, J.J. (1993) Osmotic treatment enhances particle bombardment-mediated transient and stable transformation of maize. Plant Cell Rep. 12: 84–88.

    Article  Google Scholar 

  • Vain, P., Finer, K.R., Engler, D.E., Pratt. R.C., and Finer, J.J. (1996) Intron-mediated enhancement of gene expression in maize (Zea mays L.) and bluegrass (Poa pratensis L.). Plant Cell Rep. 15: 489–494.

    Article  CAS  Google Scholar 

  • Varagona, M.J., Schmidt, R.J., and Raikhel, N.V. (1992) Nuclear localization signal(s) required for nuclear targeting of the maize regulatory protein Opaque-2. Plant Cell 4: 1213–1227.

    PubMed  CAS  Google Scholar 

  • Vasil, I.K. (1988) The contributions and prospects of plant biotechnology — an assessment. In: Pais, M.S.S., Mavituna, F., Nováis, J.M. (eds), NATO ASI Ser. H. Cell Biol., pp. 15–19. Springer-Verlag, Berlin.

    Google Scholar 

  • Vasil, V, Srivastava, V, Castillo, A.M., Fromm, M.E., and Vasil, I.K. (1993) Rapid production of transgenic wheat plants by direct bombardment of cultured immature embryos. Bio/Technology 14: 1553–1558.

    Article  Google Scholar 

  • Vasil, V, Clancy, M., Feri, R.J., Vasil, I.K., and Hannah, L.C. (1989) Increased gene expression by the first intron of maize shrunken-1 locus in grass species. Plant Physiol. 91: 1575–1579.

    Article  PubMed  CAS  Google Scholar 

  • Vasil, V, and Vasil, I.K. (1987) Formation of callus and somatic embryos from protoplasts of a commercial hybrid of maize (Zea mays L.). Theor. Appl. Genet. 73: 793–798.

    Article  Google Scholar 

  • Vaucheret, H. (1993) Identification of a general silencer for 19S and 35S promoters in a transgenic tobacco plant-90 bp of homology in the promoter sequence are sufficient for trans-inactivation. C.R. Acad. Sci. [III] 316: 1471–1483.

    CAS  Google Scholar 

  • Vera, A., Hirose, T., and Sugiura, M. (1996) Aribosomal protein gene (rpI32) from tobacco chloroplast DNA is transcribed from alternative promoters: similarities in promoter region organization in plastid housekeeping genes. Mol. Gen. Genet. 251: 518–525.

    PubMed  CAS  Google Scholar 

  • Verwoerd, T.C., Van Paridon, P.A., Van Ooyen, A.J.J., Van Lent, J.W.M., Hoekema, A., and Pen, J. (1995) Stable accumulation of Aspergillus niger phytase in transgenic tobacco leaves. Plant Physiol. 109: 1199–1205.

    Article  PubMed  CAS  Google Scholar 

  • Walters, D.A., Vetsch, CS., Potts, D.E., and Lundquist, R.C. (1992) Transformation and inheritance of a hygromycin phosphotransferase gene in maize plants. Plant Mol. Biol. 18: 189–200.

    Article  PubMed  CAS  Google Scholar 

  • Wan, Y., and Lemaux, P.G. (1994) Generation of large numbers of independently transformed fertile barley plants. Plant Physiol. 104: 37–48.

    PubMed  CAS  Google Scholar 

  • Wan, Y., Widholm, J.M., and Lemaux, P.G. (1995) Type I callus as a bombardment target for generating fertile transgenic maize (Zea mays L). Planta. 196: 7–14.

    Article  CAS  Google Scholar 

  • Wang, G., Du, T., Zhang, H., Xie, Y., Dai, J., Mi, J., Li, T., Tian, Y, Qiao, L., and Mang, K. (1995) Transfer of Bt-toxin protein gene into maize by high-velocity microprojectile bombardments and regeneration of transgenic plants. Science in China, Ser. B. Chem. Life Sci. Earth Sci. 38: 817–824.

    Google Scholar 

  • Weeks, J.T., Anderson, O.D., and Biechi, A.E. (1993) Rapid production of multiple independent lines of fertile transgenic wheat (Triticum aestivum). Plant Physiol. 102: 1077–1084.

    PubMed  CAS  Google Scholar 

  • Weymann, K., Urban, K., Ellis, D.M., Novitzky, R., Dunder, E., Jayne, S., and Pace, G. (1993) Isolation of transgenic progeny of maize by embryo rescue under selective conditions. In Vitro Cell. Dev. Biol. 29P: 33–37.

    Google Scholar 

  • Whitelam, G.C., Cockburn, B., Gandecha, A.R., and Owen, M.R.L. (1993) Heterologous protein production in transgenic plants. Biotech. Genet. Eng. Rev. 11: 1–29.

    CAS  Google Scholar 

  • Wickner, S., Hoskins, J., and McKenny, K. (1991) Function of DnaJ and DnaK as chaperones in origin-specific DNA binding by RepA. Nature 350: 165–167.

    Article  PubMed  CAS  Google Scholar 

  • Wickner, S.H. (1990) Three Escherichia coli heat shock proteins are required for P1 plasmid DNA replication: Formation of an active complex between E. coli DnaJ and P1 initiator protein. Proc. Natl. Acad. Sci. USA 87: 2690–2694.

    Article  PubMed  CAS  Google Scholar 

  • Williams, W.P., Sägers, J.B., Hanton, J.A., Davis, F.M, and Buckley, P.M. (1997) Transgenic corn evaluated for resistance to fall armyworm and southwestern corn borer. Crop Sci. 37: 957–962.

    Article  Google Scholar 

  • Williams-Carrier, R.E., Lie, Y.S., Hake, S., and Lemaux, P.G. (1997) Ectopic expression of the maize kn1 gene phenocopies the Hooded mutant of barley. Development 124: 3737–3745.

    PubMed  CAS  Google Scholar 

  • Wilson, T.M.A. (1993) Strategies to protect crop plants against viruses-pathogen-derived resistance blossoms. Proc. Natl. Acad. Sci. USA 90: 3134–3141.

    Article  PubMed  CAS  Google Scholar 

  • Witcher, D.R., Hood, E.E., Peterson, D., Bailey, M., Bond, D., Kusnadi, A., Evangelista, R., Nikolov, Z., Wooge, C, Mehigh, R., Kappel, W., Register, J., and Howard, J.A. (1998) Commercial production of /-glucuronidase (GUS): a model system for the production of proteins in plants. Mol. Breed. 4: 301–312.

    Article  CAS  Google Scholar 

  • Xiayi, K., Xiuwen, Z., Heping, S., and Baojian, L. (1996) Electroporation of immature maize zygotic embryos and regeneration of transgenic plants. Transgen. Res. 5: 219–221.

    Article  Google Scholar 

  • Yang, Y., and Gabriel, D.W. (1995) Xanthomonas avirulence/pathogenicity gene family encodes functional plant nuclear targeting signals. Mol. Plant Microb. Interact. 8: 627–631.

    Article  CAS  Google Scholar 

  • Yoder, J.I., and Goldsbrough, A.P. (1994) Transformation systems for generating marker-free transgenic plants. Bio/Technology 12: 263–267.

    Article  CAS  Google Scholar 

  • Yoon, K., Cole-Strauss, A., and Kmiec, E.B. (1996) Targeted gene correction of episomal DNA in mammalian cells mediated by a chimeric RNA-DNA oligonucleotide. Proc. Natl. Acad. Sci. USA 93: 2071–2076.

    Article  PubMed  CAS  Google Scholar 

  • Yunes, J.A., Neto, G.C., Silva, M.Jd., Leite, A., Ottoboni, L.M.M., and Amida, P. (1994) The transcriptional activator Opaque2 recognizes two different target sequences in the 22-kD-like alpha-prolamin genes. Plant Cell 6: 237–249.

    PubMed  CAS  Google Scholar 

  • Zernik, J., Thiede, M.A., Twarog, K., Stover, M.L., Rodan, G.A., Upholt, W.B., and Rowe, D.W. (1990) Cloning and analysis of the 5′ region of the rat bone/liver/kidney/placenta alkaline phosphatase gene. A dual-function promoter. Matrix 10: 38–47.

    CAS  Google Scholar 

  • Zhan, X., Wu, H.M., and Cheung, A.Y. (1996) Nuclear male sterility induced by pollen-specific expression of a ribonuclease. Sex. Plant Reprod. 9: 35–43.

    Article  Google Scholar 

  • Zhang, S., Warkentin, D., Sun, B., Zhong, H., and Sticklen, M. (1996) Variation in the inheritance of expression among subclones for unselected (uidA) and selected (bar) transgenes in maize (Zea mays L.). Theor. Appl. Genet. 92: 752–761.

    Article  CAS  Google Scholar 

  • Zhang, W., and Wu, R. (1988) Efficient regeneration of transgenic plants from rice protoplasts and correctly regulated expression of the foreign gene in the plants. Theor. Appl. Genet. 76: 835–840.

    Article  Google Scholar 

  • Zhong, H., Sun, B., Warkentin, D., Zhang, S., Wu, R., Wu, T., and Sticklen, M.B. (1996a) The competence of maize shoot meristems for integrative transformation and inherited expression of transgenes. Plant Physiol. 110: 1097–1107.

    PubMed  CAS  Google Scholar 

  • Zhong, H., Zhang, S., Warkentin, D., Sun, B., Wu, T, Wu, R., and Sticklen, M.B. (1996b) Analysis of the functional activity of the 1.4-kb 5′-region of the rice actin 1 gene in stable transgenic plants of maize (Zea mays L.). Plant Sci. 116: 73–84.

    Article  CAS  Google Scholar 

  • Zhong, T., and Arndt, K.T. (1993) The yeast SISl protein, a DnaJ homolog, is required for the initiation of translation. Cell 73: 1175–1186.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, J.K., Shi, J., Bressan, R.A., and Hasegawa, P.M. (1993) Expression of an Atriplex nummularia gene encoding a protein homologous to the bacterial molecular chaperone DnaJ. Plant Cell 5: 341–349.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gordon-Kamm, W.J., Baszczynski, C.L., Bruce, W.B., Tomes, D.T. (1999). Transgenic Cereals — Zea mays (maize). In: Vasil, I.K. (eds) Molecular improvement of cereal crops. Advances in Cellular and Molecular Biology of Plants, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4802-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4802-3_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6016-5

  • Online ISBN: 978-94-011-4802-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics