Skip to main content

Molecular Improvement of Cereal Crops — An Introduction

  • Chapter
Molecular improvement of cereal crops

Part of the book series: Advances in Cellular and Molecular Biology of Plants ((CMBP,volume 5))

Abstract

From the pre-historic era to the modern times, cereal grains have been the most important source of human nutrition, and have helped sustain the increasing population and the development of human civilization. In order to meet the food needs of the 21st century, food production must be doubled by the year 2025, and nearly tripled by 2050. It is doubtful that such enormous increases in food productivity can be brought about by relying entirely on conventional breeding methods, especially on less per capita land, poorer quality and quantity of water, and under rapidly deteriorating environmental conditions. Complementing and supplementing the breeding of major food crops, such as the cereals which together account for 66% of the world food supply, with molecular breeding and genetic manipulation may well provide a grace period of about 50 years in which to control population growth and achieve sustainable development. Commercialization of the first generation of transgenic cereals that are designed to substantially reduce or prevent the enormous losses to cereal productivity caused by competition with weeds, and by various pests and pathogens, is an important first step in that direction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahn, S., and Tanksley, S.D. (1993) Comparative linkage maps of the rice and maize genomes. Proc. Nat. Acad. Sci. USA 90: 7980–7984.

    Article  PubMed  CAS  Google Scholar 

  • Arencibia, A., Gentinetta, E., Cuzzoni, E., Castiglione, S., Kohli, A., Vain, P., Leech, M., Christou, P., and Sala, F. (1998) Molecular analysis of the genome of transgenic rice (Oryza sativa L.) plants produced via particle bombardment or intact cell electroporation. Mol. Breed 4: 99–109.

    Article  CAS  Google Scholar 

  • Bennetzen, J.L., and Freeling, M. (1993) Grasses as a single genetic system: genome composition, colinearity and compatibility. Trends Genet. 9: 259–261.

    Article  PubMed  CAS  Google Scholar 

  • Bennetzen, J.L., Kellogg, E.A., Lee, M., and Messing, J. (1998) A plant genome initiative. Plant Cell 10: 488–493.

    CAS  Google Scholar 

  • Borlaug, N.E. (1998) Feeding a world of 10 billion people: the miracle ahead. Plant Tiss. Cult. Biotech. 3: 119–127.

    Google Scholar 

  • Borlaug, N.E., and Dowsell, C.R. (1988) World revolution in agriculture. In: Book of the Year 1988, pp. 5–14. Encyclopedia Brittanica, Chicago.

    Google Scholar 

  • Centeno, M.L., Rodriguez, R., Berros, B., and Rodriquez, A. (1997) Endogenous hormonal content and somatic embryogenie capacity of Corylus avellana L. cotyledons. Plant Cell Rep. 17: 139–144.

    Article  CAS  Google Scholar 

  • Devos, K.M., and Dale, M.D. (1997) Comparative genetics in the grasses. Plant Mol. Biol. 35: 3–15.

    Article  PubMed  CAS  Google Scholar 

  • FAO (1996) FAO Production Yearbook. FAO, Rome.

    Google Scholar 

  • Flavell, R.B. (1994) Inactivation of gene expression in plants as a consequence of specific gene duplication. Proc. Nat. Acad. Sci. USA 91: 3490–3496.

    Article  PubMed  CAS  Google Scholar 

  • Fromm, M.E., Taylor, L.P., and Walbot, V. (1985) Expression of genes transferred into monocot and dicot plant cells by electroporation. Proc. Nat. Acad. Sci. USA 82: 5824–5828.

    Article  PubMed  CAS  Google Scholar 

  • Fromm, M.E., Taylor, L.P., and Walbot, V. (1986) Stable transformation of maize after gene transfer by electroporation. Nature 319: 791–793.

    Article  PubMed  CAS  Google Scholar 

  • Hauptmann, R.M., Ozias-Akins, P., Vasil, V., Tabaeizadeh, Z., Rogers, S.G., Horsch, R.B., Vasil, I.K., and Fraley, R.T (1987) Transient expression of electroporated DNA in monocotyledonous and dicotyledonous species. Plant Cell Rep. 6: 265–270.

    Article  CAS  Google Scholar 

  • Hauptmann, R.M., Vasil, V., Ozias-Akins, P., Tabaeizadeh, Z., Rogers, S.G., Fraley, R.T., Horsch, R.B., and Vasil, I.K. (1988) Evaluation of selectable markers for obtaining stable transformants in the Gramineae. Plant Physiol. 86: 602–606.

    Article  PubMed  CAS  Google Scholar 

  • Horn, M.E., Shillito, R.D., Conger, B.V., and Harms, C.T. (1988) Transgenic plants of orchardgrass (Dactylis glomerata L.) from protoplasts. Plant Cell Rep. 7: 469–472.

    Article  CAS  Google Scholar 

  • Kisaka, H., Kisaka, M., Kanno, A., and Kameya, T. (1998) Intergeneric somatic hybridization of rice (Oryza sativa L.) and barley (Hordeum vulgare L.) by protoplast fusion. Plant Cell Rep. 17: 362–367.

    Article  CAS  Google Scholar 

  • Kononov, M.E., Bassuner, B., and Gelvin, S.B. (1997) Integration of T-DNA binary vector ‘backbone’ sequences into the tobacco genome: evidence for multiple complex patterns of integration. Plant J. 11: 945–957.

    Article  PubMed  CAS  Google Scholar 

  • Kranz, E., and Lörz, H. (1993) In vitro fertilization with isolated, single gametes results in zygotic embryogenesis and fertile maize plants. Plant Cell 5: 739–746.

    PubMed  Google Scholar 

  • Kranz, E., von Wiegen, P., Quader, H., and Lörz, H. (1998) Endosperm development after fusion of isolated, single maize sperm and central cells in vitro. Plant Cell 10: 511–524.

    PubMed  CAS  Google Scholar 

  • Kyozuka, J., Taneda, K., and Shimamoto, K. (1989) Production of cytoplasmic male sterile rice (Oryza sativa L.) by cell fusion. Bio/Technology 7: 1171–1174.

    Google Scholar 

  • Lörz, H., Baker, B., and Schell, J. (1985) Gene transfer to cereal cells mediated by protoplast transformation. Mol. Gen. Genet. 199: 178–182.

    Article  Google Scholar 

  • Matzke, M.A., and Matzke, A.J.M. (1995) Why and how do plants inactivate homologous (trans)genes? Plant Physiol. 107: 679–685.

    PubMed  CAS  Google Scholar 

  • Moore, G., Devos, K.M., Wang, Z., and Gale, M.D. (1995) Grasses, line up and form a circle. Curr. Biol. 5: 737–739.

    Article  PubMed  CAS  Google Scholar 

  • Oerke, E-C, Dehne, H-W, Schöbeck, F., and Weber, A. (1994) Crop Production and Crop Protection. Elsevier, Amsterdam.

    Google Scholar 

  • Pazkowski, J., Shillito, R.D., Saul, M., Mandak, V, Hohn, T., Hohn, B., and Potrykus, I. (1984) Direct gene transfer to plants. EMBO J. 3: 2717–2722.

    Google Scholar 

  • Potrykus, I. (1991) Gene transfer to plants: assessment of published approaches and results. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42: 205–225.

    Article  CAS  Google Scholar 

  • Potrykus, I., Saul, M.W., Petruska, J., Paszkowski, J., and Shillito, R.D. (1985) Direct gene transfer to cells of a graminaceous monocot. Mol. Gen. Genet. 199: 183–188.

    Article  CAS  Google Scholar 

  • Rajasekaran, K., Hein, M.B., and Vasil, I.K. (1987a) Endogenous abscisic acid and indole-3-acetic acid and somatic embryogenesis in cultured leaf expiants of Pennisetum purpureum Schum. Plant Physiol. 84: 47–51.

    Article  PubMed  CAS  Google Scholar 

  • Rajasekaran, K., Hein, M.B., Davis, G.C., Carnes, M.G., and Vasil, I.K. (1987b) Endogenous growth regulators in leaves and tissue cultures of Pennisetum purpureum Schum. J. Plant Physiol. 130: 13–25.

    Article  CAS  Google Scholar 

  • Ramanathan, V., and Veluthambi, K. (1995) Transfer of non-T-DNA portions of the Agrobacterium tumefaciens Ti plasmid pTiA6 from left termintus of TL-DNA. Plant Mol. Biol. 28: 1149–1154.

    Article  PubMed  CAS  Google Scholar 

  • Rhodes, C.A., Pierce, D.A., Mettler, I.J., Mascarenhas, D., and Detmer, J.J. (1988) Genetically transformed maize plants from protoplasts. Science 240: 204–207.

    Article  PubMed  CAS  Google Scholar 

  • Sanford, J. C, Klein, T.M., Wolf, E.D., and Allen, N. (1987) Delivery of substances into cells and tissues using a particle bombardment process. J. Part. Sci. Technol. 5: 27–37.

    Article  CAS  Google Scholar 

  • Shimamoto, K., Terada, R., Izawa, T., and Fujimoto, H. (1989) Fertile transgenic rice plants regenerated from transformed protoplasts. Nature 338: 274–276.

    Article  CAS  Google Scholar 

  • Smith, N. (1998) More T-DNA than meets the eye. Trends Plant Sci. 3: 85.

    Article  Google Scholar 

  • Srivastava, V., Vasil, V., and Vasil, I.K. (1996) Molecular characterization of the fate of transgenes in transformed wheat (Triticum aestivum L.). Theor. Appl. Genet. 92: 1031–1037.

    Article  CAS  Google Scholar 

  • Swedlund, B., and Vasil, I.K. (1985) Cytogenetic characterization of embryogenic callus and regenerated plants of Pennisetum americanum (L.) K. Schum. Theor. Appl. Genet. 69: 575–581.

    Article  Google Scholar 

  • Takamizo, T., Spangenberg, G., Suginobu, K., and Potrykus, I. (1991) Intergeneric somatic hybridization in Gramineae: somatic hybrid plants between tall fescue (Festuca arundinacea Schreb.) and Italian ryegrass (Lolium multiflorum Lam.). Mol. Gen. Genet. 231: 1–6.

    Article  PubMed  CAS  Google Scholar 

  • Terada, R., Kyozuka, J., Nishibayashi, S., and Shimamoto, K. (1987) Plantlet regeneration from somatic hybrids of rice (Oryza sativa L.) and barnyard grass (Echinochloa oryzicola Vasing.). Mol. Gen. Genet. 210: 39–43.

    Article  Google Scholar 

  • Vasil, I.K. (1994) Cellular and molecular genetic improvement of cereals. In: Terzi, M., Cella, A. and Falavgina, A., (eds), Current Issues in Plant Molecular and Cellular Biology, pp. 5–18. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Vasil, I.K. (1998) Biotechnology and food security for the 21st century: a real-world perspective. Nature Biotechnology 16: 399–400.

    Article  PubMed  CAS  Google Scholar 

  • Vasil, I.K., and Vasil, V. (1992) Advances in cereal protoplast research. Physiol. Plant. 85: 279–283.

    Article  CAS  Google Scholar 

  • Vasil, I.K., and Vasil, V. (1994) In vitro culture of cereals and grasses. In: Vasil, I.K. and Thorpe, T.A. (eds), Plant Cell and Tissue Culture, pp. 293–312. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Wenck, A., Conger, B.V., Trigiano, R., and Sams, C.L. (1988) Inhibition of somatic embryogenesis in orchardgrass by endogenous cytokinins. Plant Physiol. 88: 990–992.

    Article  PubMed  CAS  Google Scholar 

  • Wenck, A., Czakó, M., Kanevski, I., and Márton, L. (1997) Frequent collinear long transfer of DNA inclusive of the whole binary vector during Agrobacterium-medieded transformation. Plant Mol. Biol. 34: 913–922.

    Article  PubMed  CAS  Google Scholar 

  • Yang, Z., Shikanai, T., Mori, K., and Yamada, Y. (1989) Plant regeneration from cytoplasmic hybrids of rice (Oryza sativa L.). Theor. Appl. Genet. 77: 305–310.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vasil, I.K. (1999). Molecular Improvement of Cereal Crops — An Introduction. In: Vasil, I.K. (eds) Molecular improvement of cereal crops. Advances in Cellular and Molecular Biology of Plants, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4802-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4802-3_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6016-5

  • Online ISBN: 978-94-011-4802-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics