Skip to main content

Part of the book series: NATO Science Series ((ASEN2,volume 51))

Abstract

The specific goal of this work is to demonstrate the possibilities of new ocean color satellite sensors such as the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) for studying processes in the Eastern Mediterranean, with the Aegean Sea as an example. The Aegean Sea appears as an appropriate basin for study of contrasting ecosystems, because it is subjected to intrusion of water masses of different origin with pronounced contrast in bioproductivity: the eutrophic water from the Black Sea, and the oligotrophic water from the Levantine Basin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Campbell, J.W., Blaisdell, J.M., and Darzi, M. (1995) Level-3 Sea WiFS data products: spatial and temporal binning algorithms, NASA Technical Memorandum 104566, 32, 1–73.

    Google Scholar 

  2. Acker, J.G. (1997) Sea WiFS data available at the GSFC DAAC, Backscatter, 8, 8–14.

    Google Scholar 

  3. Carder, K.L., Lee, Z, Hawes S., and Chen, F.R. (1995) Optical model of ocean remote sensing: Application to ocean color algorithm development, COSPAR Colloquium Space Remote Sensing of Subtropical Oceans, 15A 3-1-13A3-6.

    Google Scholar 

  4. Weidemann, A.D., Stavn, R.H., Zaneveld, J.R.V., and Wilcox, M.R. (1995) Error in predicting hydrosol backscattering from remotely sensed reflectance, J. Geophys. Res., 100, 13, 163–213, 177.

    Google Scholar 

  5. Roesler, C.S., and Perry, M.G. (1995) In situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance, J. Geophys. Res., 100, 13, 279–313, 294.

    Google Scholar 

  6. Lee Z., Carder, K.L., Peacock, T.G., Davis, C.O., and Mueller, J.L. (1996) Method to derive ocean absorption coefficients from remote-sensing reflectance, Appl. Opt., 35, 453–462.

    Article  PubMed  CAS  Google Scholar 

  7. Gordon, H.R., Brown, O.B., Evans, R.H., Brown, J.W., Smith, R.S., and Clark, D.K. (1988) A semianalytic radiance model of ocean color, J. Geophys. Res., 93, 10, 909–910, 924.

    Google Scholar 

  8. Kopelevich, O.V., Sheberstov, S.V., and Farroukhchine, R.Kh. (1998) Application of the statistical method of atmospheric correction of satellite ocean color data in the coast upwelling area, Issled. Zemli iz Kosmosa, 113–122.

    Google Scholar 

  9. Pope, R.M., and Fry, E.S. (1997) Absorption spectrum 380-700 nm of pure water. II. Integrating cavity measurements, Appl. Opt., 36, 8710–8723.

    Article  PubMed  CAS  Google Scholar 

  10. Shifrin, K.S.(1988) Physical optics of ocean water, AIP Translation Series, Amer. Inst. Phys., New York.

    Google Scholar 

  11. Bricaud A., Babin M., Morel A., and Claustre, H. (1995) Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: Analysis and parameterization, J. Geophys. Res., 100, 13, 321–13, 332.

    Google Scholar 

  12. Ovchinnikov, I.M. (1976) The currents in the strcits and seas of the Meditterranean Basin, in V.A. Burkov (ed.), Gydrologiya Sredizemnogo morya, Gidrometeoizdat, Leningrad, pp.342–344.

    Google Scholar 

  13. Gordon, H.R. (1989) Can the Lambert-Beer low be applied to the diffuse attenuation coefficient of ocean water?, Limnol. Oceanogr., 34, 1389–1409.

    Article  Google Scholar 

  14. Gordon, H.R., Clark, D.K., Brown, J.W., Brown, O.B., Evans, R.H., and Broenkow, W.W. (1983) Phytoplankton pigment concentrations in the Middle Atlantic Bight: comparison of ship determinations and CZCS estimates, Appl. Opt., 22, 20–36.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Burenkov, V.I., Kopelevich, O.V., Sheberstov, S.V., Ershova, S.V., Evdoshenko, M.A. (1999). Bio-Optical Characteristics of the Aegean Sea Retrieved from Satellite Ocean Color Data. In: Malanotte-Rizzoli, P., Eremeev, V.N. (eds) The Eastern Mediterranean as a Laboratory Basin for the Assessment of Contrasting Ecosystems. NATO Science Series, vol 51. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4796-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4796-5_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5586-1

  • Online ISBN: 978-94-011-4796-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics