Advertisement

Intelligent Autonomous Systems: Visual Navigation Functionalities for Autonomous Mobile Vehicles

  • E. Stella
  • A. Distante
Chapter
Part of the International Series on Microprocessor-Based and Intelligent Systems Engineering book series (ISCA, volume 18)

Abstract

The main reason behind the lack, of a real commercial development of Autonomous mobile vehicles (AMV) is due to the difficulty for these kind of systems to satisfy three important constraints: cheapness, speed and uncertainty.

Keywords

Mobile Robot Optic Flow World Model Maximum Clique Problem Relative Navigation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cameron, S., Probert, P.:Advanced Guided Vehicles, Wolrd Scientific, 1994.Google Scholar
  2. 2.
    Borestein, J., Everett, H.R., Feng, L.: Navigating Mobile Robots: systems and techniques, A.K. Peters LTD, 1996.Google Scholar
  3. 3.
    Stella, E., Distante, A.:Self-location of a mobile robot by estimation of camera parameters, Journal of Robotics and Autonomous Systems — Elsevier, 15 (1995)Google Scholar
  4. 4.
    Talluri, R, Aggarwal, J.K.:Position estimation techniques for autonomous mobile robots — a review, Handbook of pattern Recognition and Computer Vision, World Scientific, 1993.Google Scholar
  5. 5.
    Tsai, R.Y.:A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses, IEEE J. Robotics Automat., vol. 3, No. 4, (1987).Google Scholar
  6. 6.
    Weng, J., Cohen, P., Herniou, M.:Camera Calibration with Distorsion Models and Accuracy Evaluation, IEEE PAMI, Vol.14, No.10 (1992).Google Scholar
  7. 7.
    Lenz, R.K, Tsai, R.Y:Techniques for calibration of scale factor and image center for high accuracy 3D vision metrology, Proc. IEEE Int. Conf. Robotics Automat. (Raleigh, NC.), (1987).Google Scholar
  8. 8.
    Beardsley P.A., et al.:The correction of radial distorsion in images, Technical report 7596/97,Department of Engineering Science, Univ. of Oxford (UK) (1991).Google Scholar
  9. 9.
    Stella, E.:Visual Self location of mobile robot, IESI-CNR Tech. Report RO20/94, (1994).Google Scholar
  10. 10.
    Kosaka, A., Kak, A.:Fast Vision-guided mobile robot navigation using model-based reasoning and prediction of uncertainties, Journal of Computer Vision, Graphics and Image Processing:Image Understanding,Vol. 56, no.3, (1992).Google Scholar
  11. 11.
    Paradalos, P.M., Xue, J.:The maximum clique problem, Journal of Global Optimization, 4 (1994).Google Scholar
  12. 12.
    Straforini, M., Coelho, C., Campani M., Torre, V.: The Recovery and Understanding of a Line Drawing from Indoor Scenes, IEEE PAMI, Vol.14, no.2, (1992).Google Scholar
  13. 13.
    Canny, J.:A Computational Approach to Edge Detection, IEEE PAMI, vol. 8, no. 6, (1989).Google Scholar
  14. 14.
    Ayache, N., Faverjon, B.:Efficient registration of stereo images by matching graph descriptions of edge segments, Intern. Journ. Of Computer Vision, 1 (1987).Google Scholar
  15. 15.
    Mundy, J.J., Zisserman, A.:Geometric Invariance in computer vision, MIT Press, 1992.Google Scholar
  16. 16.
    Ballard, B.D, Brown, C.M.:Computer Vision, Prentice Hall, Englewood Ciffs, NJ (1982)Google Scholar
  17. 17.
    Horaud, R., Skordas, T.:Stereo Correspondence through feature grouping and maximal clique, IEEE PAMI, 11 (1989).Google Scholar
  18. 18.
    Venkateswar, V., Chellappa, R.:Hierarchical Stereo and Motion correspondence using feature groupings, Intern. Journ. of Computer Vision, 15 (1995).Google Scholar
  19. 19.
    Pelillo, M.,:Relaxation Labelling Networks for the maximum clique problem, Journal of Artificial Neural Networks, 2(4) (1995).Google Scholar
  20. 20.
    Battiti, R., Protasi, M.:Reactive Local Search for the maximum clique problem, ICSI-Berkeley, CA, TR-95-052, (1995).Google Scholar
  21. 21.
    Moravec, H.P:The Stanford Cart and the CMU Rover, Proc. IEEE, 7(71), (1983).Google Scholar
  22. 22.
    Ayache, N.:Artificial Vision for Mobile Robots, MIT Press, 1991.Google Scholar
  23. 23.
    Matthies, L. Shafer, S.:Error Modelling in stereo navigation, IEEE Journal of Robotics and Automation, 3(3) (1987).Google Scholar
  24. 24.
    Sing, A.:Optic Flow Computation, IEEE Computer Society Press, 1991.Google Scholar
  25. 25.
    Longuet-Higgins, H.C., Prazdny, K.:The Interpretation of a Moving Retinal Image, Proc. Roy. Soc. Lond. Ser. B 208 (1980).Google Scholar
  26. 26.
    Aloimonos, Y., Duric, Z.: Estimating the heading direction using normal flow, Int. Journal of Computer Vision. 13(1) (1994).Google Scholar
  27. 27.
    Lee, J.J., Chang, J., Ho Ha, Y.:Stereo Correspondence using the Hopfield Neural Network of a new energy function, Pattern Recognition, 11(27) (1994).Google Scholar
  28. 28.
    Clark J., Yuille, A.: Data Fusion for sensory information processing systems, Kluwer Academic Publishers, 1990Google Scholar
  29. 29.
    Pascual J.B., Starink, E.:Finding point correspondences using simulated annealing, Pattern Recognition, 2(28) (1995).Google Scholar
  30. 30.
    Nasrabadi, N.M., Choo, C.Y.:Hopfield Network for Stereo Vision Correspondence, IEEE Trans. Neural Networks, 1(3) (1992).Google Scholar
  31. 31.
    Zhou, Y.T., Chellappa, R.: A Neural Network for Motion Processing, Neural Network Perception — Academic Press, 1 (1992).Google Scholar
  32. 32.
    Ullman, S.: The Interpretation of Visual Motion, MIT Press, 1979.Google Scholar
  33. 33.
    Convertino, G., Stella E., Branca, A., Distante A.:Optic flow estimation by an Hopfield neural network using geometrical constraint, Journal of Machine Vision and Applications, 10 (1997).Google Scholar
  34. 34.
    Marr, D., Poggio, T.:A computational theory of human stereo vision, Proc. of Royal Society of London B. 204. (1979).Google Scholar
  35. 35.
    Burger, W., Bhanu, B.:Estimating 3D Egomotion from perspective image sequences, IEEE PAMI, 18(12) (1990).Google Scholar
  36. 36.
    De Micheli, E., Torre, V., Uras, S.:The accuracy of the computation of optical flow and of the recovery of motion parameters, IEEE PAMI, 5(15) (1993).Google Scholar
  37. 37.
    Hummel, R., Sundareswaran, V.:Motion Parameter Estimation from Global Flow Field Data, IEEE PAMI, 5(15) (1993).Google Scholar
  38. 38.
    Meyer, F.G.:Time to collision from first-order models of the motion field, IEEE Trans. on Robotics and Autom., 6(10) (1994).Google Scholar
  39. 39.
    Prazdny, K.:Determining the Instantaneous Direction of Motion from Optical Flow Generated by a Curvilinearly Moving Observer, Journal of Computer Vision, Graphics and Image processing, 17 (1981).Google Scholar
  40. 40.
    Barron, J.L, Fleet, D.J., Beauchemin, S.S.: Performance of Optical Flow techniques, Intern. Journal of Computer Vision, 1(12) (1994).Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • E. Stella
    • 1
  • A. Distante
    • 1
  1. 1.Consiglio Nazionalle delle RicercheIstituto Elaborazione Segnali ed ImmaginiBariItaly

Personalised recommendations