Reactive Planning with Learned Operational Concepts

  • Volker Klingspor
Part of the International Series on Microprocessor-Based and Intelligent Systems Engineering book series (ISCA, volume 18)


In the near future, services will be provided more and more by robots. The potential market for these service robots is expected to exceed that of current industrial robots until 2010 [1]. Currently, the first service robots are used in hospitals, factories, and to help the disabled [2]. Since users of service robots are usually no specialists in robots programming, new aspects for controlling robots should be topics of current research. The first topic we want to mention in this chapter is:

How communicates the user with the robot?

Communication comprises two direction, from the user to the robot to specify the task the robot should perform, and vice versa, from the robot to the user to report about what the robot has actually done in reality.


Mobile Robot Action Feature Perceptual Feature Service Robot Inductive Logic Programming 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Hägele. Service Roboter — ein Beitrag zur Innovation im Dienstleistungswesen. IPA — Frauenhofer Institut für Produktionstechnik und Automatisierung, 1994.Google Scholar
  2. [2]
    J. Evans. HelpMate: An autonomous mobile robot courier for hospitals. In IEEE/RSJ Intern. Conf. on Intelligent Robots and Systems (IROS ′94), Germany, 1994.Google Scholar
  3. [3]
    T. Längle, T. Lueth, G. Herzog, E. Stopp, and G. Kamstrup. KANTRA — a natural language interface for intelligent robots. In Intelligent Autonomous Systems IAS-4, pages 365–372. IOS Press, 1995.Google Scholar
  4. [4]
    P. E. Agre and D. Chapman. What are plans for? In Pattie Maes, editor, Designing Autonomous Agents, pages 17–34. MIT Press, 1990.Google Scholar
  5. [5]
    S. Förster, H. Lobing, and K. Peters. Architekturkonzeption eines teilautonomen Montageroboters. Report-Situierte Künstliche Kommunikatoren 95/10, Universität Bielefeld, 1995.Google Scholar
  6. [6]
    A. Saffiotti, K. Konolige, and E. H. Ruspini. A multivalued logic approach to integrating planning and control. Artificial Intelligence 76 (1995), 481–526.CrossRefGoogle Scholar
  7. [7]
    V. Klingspor, J. Demiris, and M. Kaiser. Human-robot-communication and machine learning. Applied Artificial Intelligence 11 (1997), 719–746.Google Scholar
  8. [8]
    L. Seabra Lopes and L.M. Camarinha-Matos. Planning, training and learning in supervision of flexible assembly systems. In Procs. of Conf. on Balanced Automation Systems, 1995.Google Scholar
  9. [9]
    V. Klingspor, K. Morik, and A. Rieger. Learning concepts from sensor data of a mobile robot. Machine Learning 23 (1996), 305–332.Google Scholar
  10. [10]
    L. P. Kaelbling. Foundations of learning in autonomous agents. Robotics and Autonomous Systems 8 (1991), 131–144.CrossRefGoogle Scholar
  11. [11]
    J. Millán and C. Torras. Learning to avoid obstacles through reinforcement. In Procs. of the 8th Intern. Workshop on Machine Learning, pages 298–302. Morgan Kaufmann, 1991.Google Scholar
  12. [12]
    A. Segre. Machine Learning of Robot Assembly Plans. Kluwer, Boston, 1988.Google Scholar
  13. [13]
    J.G. Carbonell, C. Knoblock, and S. Minton. PRODIGY: An integrated architecture for planning and learning. In K. VanLehn, editor, Architectures for intelligence. Lawrence Erlbaum, 1991.Google Scholar
  14. [14]
    S.W. Bennett. Learning uncertainty tolerant plans through approximation in complex domains. Technical Report UILU-ENG-89-2204, University of Illinois at Urbana-Champaign, January 1989.Google Scholar
  15. [15]
    K. Zercher. Wissensintensives Lernen für zeitkritische technische Diagnoseaufgaben. infix, Sankt Augustin, 1992.Google Scholar
  16. [16]
    A. I. Cypher. Watch what I do — Programming by Demonstration. MIT Press, Cambridge, Massachusetts, 1993.Google Scholar
  17. [17]
    M. Kaiser and R. Dillmann. Building elementary robot skills from human demonstration. In IEEE International Conf. on Robotics and Automation, Minneapolis, 1996.Google Scholar
  18. [18]
    V. Klingspor and K. Morik. Towards concept formation grounded on perception and action of a mobile robot. In IAS-4, Proc. of the 4th Intern. Conf. on Intelligent Autonomous Systems, pages 271–278, 1995. IOS Press.Google Scholar
  19. [19]
    S. Muggleton, editor. Inductive Logic Programming. Academic Press, 1992.Google Scholar
  20. [20]
    J. U. Kietz. Induktive Analyse relationaler Daten. PhD thesis, Technische Universität Berlin, 1996.Google Scholar
  21. [21]
    A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam. PVM: Parallel Virtual Machine — A Users' Guide and Tutorial. MIT Press, 1994.Google Scholar
  22. [22]
    R. Dillmann, J. Kreuziger, and F. Wallner. PRIAMOS — an experimental platform for reflexive navigation. In IAS-3: Intelligent Autonomous Systems, pages 174–183. IOS Press, 1993.Google Scholar
  23. [23]
    V. Klingspor. On-line inference of off-line learned operational concepts. In Henry Hexmoor and Lisa Meeden, editors, ROBOLEARN ′96: An Intern. Workshop on Learning for Autonomous Robots, pages 54–63, 1996.Google Scholar
  24. [24]
    A. Rieger. MP: An efficent method for calculating the minimum Herbrand model of chain Datalog programs. In W. Wahlster, editor, Procs. of the 12th European Conf. on Artificial Intelligence, 1996.Google Scholar
  25. [25]
    M. Beetz and D. McDermott. Declarative goals in reactive plans. In Procs. of the First International Conference on AI Planning Systems. Morgan Kaufmann, 1992.Google Scholar
  26. [26]
    Quintus Corporation, Palo Alto, Califonia. Quintus Prolog, Release 3.1, 1991.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Volker Klingspor
    • 1
  1. 1.Lehrstuhl Informatik VIIIUniversität DortmundDortmundGermany

Personalised recommendations