Autonomous Robotic Exploration and Gaze Planning Using Range Sensing

  • Pamela A. M. Renton
  • Hoda A. Elmaraghy
  • Michael Greenspan
  • Hassen Zghal
Part of the International Series on Microprocessor-Based and Intelligent Systems Engineering book series (ISCA, volume 18)


In recent years, a number of robotic applications have appeared in which little is known about the scene structure or the geometry of the robot workspace. It may sometimes be difficult or impossible for humans, due to adverse conditions, to observe and model environments such as nuclear sites with high levels of radioactivity. The examination of these environments and determining the objects present require autonomous sensing and exploration, which in turn involve significant remote and collision-free robotic activity.


Mobile Robot Motion Planning Path Planning Collision Detection Range Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Hedberg: Robots Cleaning Up Hazardous Waste, AI Expert, 20-24 (May 1995).Google Scholar
  2. 2.
    K. Joarder and D. Raviv: Autonomous Obstacle Avoidance Using Visual Fixation and Looming, SPIE Proc: Intelligent Robots and Computer Vision XI, Vol. 1825, pp. 733–744 (1992).Google Scholar
  3. 3.
    C. A. Shaffer and G. M. Herb: A Real-Time Robot Arm Collision Avoidance System, IEEE Trans. on Robotics and Automation 8, 149–160 (1992).4. P. Whaite and F. Ferrie: Autonomous Exploration: Driven By Uncertainty, Technical Report TR-CIM-93-17, Centre for Intelligent Machines, McGill University, Montréal, QC, Canada (1993).CrossRefGoogle Scholar
  4. 5.
    A. Zelinsky: A Mobile Robot Exploration Algorithm, IEEE Trans. on Robotics and Automation 8, 707–717 (1992).CrossRefGoogle Scholar
  5. 6.
    M. Greenspan and N. Burtnyk: Real Time Collision Detection, United States Patent Number 5, 347,459 (March 1993).Google Scholar
  6. 7.
    J.-A. Beraldin, M. Rioux, F. Blais, and R. A. Couvillon: Digital Three-Dimensional Imaging in the Infrared at the National Research Council of Canada, SPIE Proc: Int. Symp. on Optics, Imaging, and Instrumentation: Infrared Technology XX, Vol. 2269, San Diego, CA, USA, pp. 208–225 (July 1994).Google Scholar
  7. 8.
    M. Greenspan, M. Lipsett, J. Ballantyne, P. Renton, E. Gagnon, and N. Burtnyk: Laser Range Vision for Tele-Excavation, Proc. 1995 Robotics and Knowledge Based Systems Workshop, St. Hubert, QC, Canada (Oct. 1995).Google Scholar
  8. 9.
    P. Renton, M. Greenspan, N. Burtnyk, and H. ElMaraghy: Scan-N-Plan: Collision-Free Autonomous Workspace Exploration, Proc. 1995 Robotics and Knowledge-Based Systems Workshop, St. Hubert, QC, Canada (Oct. 1995).Google Scholar
  9. 10.
    F. Arman and J. K. Aggarwal, Model-Based Object Recognition in Dense-Range Images — A Review, ACM Computing Surveys 25, 67–108 (1993).CrossRefGoogle Scholar
  10. 11.
    S. Motavalli and B. Bidanda, A Part Image Reconstruction System for Reverse Engineering of Design Modifications, Journal of Manufacturing Systems 10, 383–395 (1991).CrossRefGoogle Scholar
  11. 12.
    R. A. Jarvis: Range Sensing for Computer Vision, Three-Dimensional Object Recognition Systems, A.K. Jain and P.J. Flynn, eds., Elsevier Science Publishers B.V., Amesterdam, The Netherlands, pp. 17–56 (1993).Google Scholar
  12. 13.
    M. Rioux, Digital 3-D Imaging: Theory and Applications, SPIE Proc, Videometrics III, Int. Symp. on Photonic and Sensors and Controls for Commercial Applications, Vol. 2350, Boston, MA, USA, pp. 2–15 (Oct./Nov. 1994).Google Scholar
  13. 14.
    J. Maver and R. Bajcsy: Occlusions as a Guide for Planning the Next View, IEEE Trans. on Pattern Analysis and Machine Intelligence 15, 417–432 (1993).CrossRefGoogle Scholar
  14. 15.
    J. E. Banta, Y. Zhien, X. Z. Wang, G. Zhang, M. T. Smith, and M. A. Abidi: A ‘Best-Next-View’ Algorithm for Three-Dimensional Scene Reconstruction Using Range Images, SPIE Proc, Intelligent Robots and Computer Vision XIV: Algorithms, Techniques, Active Vision and Materials Handling, Vol. 2588, Philadelphia, PA, USA, pp. 418–429 (Oct. 1995).CrossRefGoogle Scholar
  15. 16.
    E. Kruse, R. Gutsche, and F. M. Wahl: Efficient, Iterative, Sensor Based 3-D Map Building Using Rating Functions in Configuration Space, Proc. IEEE Int. Conf. on Robotics and Automation, Minneapolis, MN, USA, pp.1067–1072 (April 1996).Google Scholar
  16. 17.
    Z. Chen and C. Huang: Terrain Exploration of a Sensor-Based Robot Moving among Unknown Obstacles of Polygonal Shape, Robotica 12, 33–44 (1994).CrossRefGoogle Scholar
  17. 18.
    R. H. T. Chan, P. K. S. Tam, and D. N. K. Leung: Robot Navigation in Unknown Terrains via Multi-Resolution Grid Maps, IECON′91, pp. 1138–1143 (1991).Google Scholar
  18. 19.
    E. R. Stuck, A. Manz, D. A. Green, and S. Elgazzar: Map Updating and Path Planning for Real-Time Mobile Robot Navigation, Proc. IEEE/RSJ/GI Int. Conf. on Intelligent Robots and Systems, Munich, Germany, pp. 753–760 (Sept. 1994).Google Scholar
  19. 20.
    Y. K. Hwang and N. Ahuja: Gross Motion Planning — A Survey, ACM Computing Surveys 24, 219–291 (1992).CrossRefGoogle Scholar
  20. 21.
    E. Cheung and V. Lumelsky: Motion Planning for a Whole-Sensitive Robot Arm Manipulator, Proc. IEEE Int. Conf. on Robotics and Automation, Cincinnati, OH, USA, pp. 344–349 (May 1990).Google Scholar
  21. 22.
    J. L. Novak and J. T. Feddema: Capacitive-Based Proximity Sensor for Whole Arm Obstacle Avoidance, Proc. IEEE Int. Conf. on Robotics and Automation, Nice, France, pp. 1307–1313 (May 1992).Google Scholar
  22. 23.
    K. K. Gupta and X. M. Zhu: Extracting Polyhedral Models from a Range Image: A Hybrid Approach, Computer Vision: Systems, Theory and Applications, A. Basu, ed., World Scientific Press, Singapore (1992).Google Scholar
  23. 24.
    T. O. Binford: Visual Perception by Computer. Proc. IEEE Conf. on Systems and Control, Miami, FL, USA (1971).Google Scholar
  24. 25.
    A. A. G. Requicha and H. B. Voelcker: Solid Modeling: A historical Summary and Contemporary Assessment, IEEE Computer Graphics and Applications 2, 9–24 (1982).CrossRefGoogle Scholar
  25. 26.
    T. C. Henderson: Efficient 3-D Object Representations for Industrial Vision Systems, IEEE Trans. on Pattern Analysis and Machine Intelligence 5, 609–617 (1983).CrossRefGoogle Scholar
  26. 27.
    D. J. Meagher: Geometric Modeling Using Octree Encoding, Computer Graphics and Image Processing 19, 129–147 (1981).CrossRefGoogle Scholar
  27. 28.
    M. Greenspan and N. Burtnyk: Obstacle Count Independent Real-Time Collision Avoidance, Proc. IEEE Int. Conf. on Robotics and Automation, Minneapolis, MN, USA, pp. 1073–1080 (April 1996).Google Scholar
  28. 29.
    S. K. Singh and M. C. Leu, Manipulator Motion Planning in the Presence of Obstacles and Dynamic Constraints, The Int. Journal of Robotics Research 10, 171–187 (1991).CrossRefGoogle Scholar
  29. 30.
    Y. K. Hwang and N. Ahuja: A Potential Field Approach to Path Planning, IEEE Trans. on Robotics and Automation 8, 23–32 (1992).CrossRefGoogle Scholar
  30. 31.
    J. Barraquand and J. C. Latombe: A Monte-Carlo Algorithm for Path Planning with Many Degrees of Freedom, Proc. IEEE Int. Conf. on Robotics and Automation, Cincinnati, OH, USA, pp. 1712–1717 (May 1990).Google Scholar
  31. 32.
    K. K. Gupta and Z. Guo: Motion Planning for Many Degrees of Freedom: Sequential Search with Backtracking, IEEE Trans. on Robotics and Automation 11, 897–906 (1995).CrossRefGoogle Scholar
  32. 33.
    T. Lozano-Pérez: Spatial Planning: A Configuration Space Approach, IEEE Trans. on Computers C-32, 108–120 (1983).CrossRefGoogle Scholar
  33. 34.
    N. J. Nilsson: Principles of Artificial Intelligence, Morgan Kaufmann Publishers Inc., Los Altos, CA, USA (1980).zbMATHGoogle Scholar
  34. 35.
    K. S. Fu, R. C. Gonzalez, and C. S. G. Lee: Robotics: Control, Sensing, Vision, and Intelligence, McGraw-Hill, New York, NY, USA (1987).Google Scholar
  35. 36.
    Y. Roth-Tabak and R. Jain: Building an Environment Model Using Depth Information, Technical Report CSE-TR-07-88 U, E.E. and C.S. Dept., University of Michigan, Ann Arbor, MI, USA (1988).Google Scholar
  36. 37.
    P. A. M. Renton: Plan-N-Scan: Autonomous Workspace Mapping, Master's Thesis, Department of Mechanical Engineering, McMaster University, Hamilton, ON, Canada (1996).Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Pamela A. M. Renton
    • 1
  • Hoda A. Elmaraghy
    • 2
  • Michael Greenspan
    • 3
  • Hassen Zghal
    • 2
  1. 1.Department of Mechanical EngineeringMcMaster UniversityCanada
  2. 2.Intelligent Manufacturing Systems (IMS) CentreUniversity of WindsorWindsorCanada
  3. 3.National Research Council of CanadaOttawaCanada

Personalised recommendations