Advertisement

Autonomous Robot Motion Planning and Control in Uncertain Environments: Overview and A New Algorithm Based on Sliding-Mode Control

  • S. G. Tzafestas
  • M. P. Tzamtzi
  • G. G. Rigatos
Chapter
Part of the International Series on Microprocessor-Based and Intelligent Systems Engineering book series (ISCA, volume 18)

Abstract

Motion planning and execution for autonomous robots moving inside an environment populated by static and moving obstacles, constitutes one of the most important up to date problems of robotic research. The need for the derivation of safe feasible solutions to this problem increases significantly as the applications of robots extend to complicated, hazardous or even unknown environments. Indoor mobile and space robots are two representative cases of robotic applications where the robot must be able to move safely, avoiding collisions with obstacles, inside an environment where unforeseen changes might take place. Moreover, all these tasks must be performed with a minimum interaction of the human operator.

Keywords

Mobile Robot Motion Planning Path Planning Collision Avoidance Mobile Manipulator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Latombe, J. C.:Robot Motion Planning, Kluwer Academic Publishers, 1991.Google Scholar
  2. 2.
    Barbehenn, M, and Hutchinson, S.: Efficient Search and Hierarchical Motion Planning by Dynamically Maintaining Single-Source Shortest Paths Trees, IEEE Trans. Robotics Automat., 11 (1995), 198–214.CrossRefGoogle Scholar
  3. 3.
    Brooks, R., and Lozano-Perez, T.: A Subdivision Algorithm in Configuration Space for Findpath with Rotation, Technical Report AIM 684, MIT AI Laboratory, 1982.Google Scholar
  4. 4.
    Brooks, R., and Lozano-Perez, T.: A Subdivision Algorithm in Configuration Space for Findpath with Rotation, In: Proc. Int. Joint Conf. on Art. Intell., (1983), 799–806.Google Scholar
  5. 5.
    Tzionas, P.G., Thanailakis, A., and Tsalides, P.G.: Collision-Free Path Planning for a Diamond-Shaped Robot Using Two-Dimensional Cellular Automata, IEEE Trans. Robotics Automat., 13 (1997), 237–250.CrossRefGoogle Scholar
  6. 6.
    Rao, N.S.V.: An Algorithmic Framework for Navigation in Unknown Terrains, IEEE Trans. Comput., (1989), 37–43.Google Scholar
  7. 7.
    Rao, N.S.V., Stoltzfus, N.,and Iyengar, S.S.: A ‘Retraction’ Method for Learned Navigation in Unknown Terrains for a Circular robot, IEEE Trans. Robotics Automat., 7 (1991), 699–707.CrossRefGoogle Scholar
  8. 8.
    Sugihara, K.: Approximation of Generalised Voronoi Diagrams by Ordinary Voronoi Diagrams, Graphical Models and Image Processing, 55 (1993), 522–531.CrossRefGoogle Scholar
  9. 9.
    O’Dunlaing, C., and Yap, C.K.: A Retraction Method for Planning the Motion of a Disc, J. Algorithms, 6 (1983), 187–192.MathSciNetGoogle Scholar
  10. 10.
    Asano, T., Guibas, L., Hershberger, J., and Imai, H.: Visibility-Polygon Search and Euclidean Shortest Path, In: 26th Symp. Foundations Comput. Sci., Portland, OR, (1985), 155–164.Google Scholar
  11. 11.
    Schwartz, J.T., and Sharir, M.: On the Piano Mover's Problem: I. The Case of a Two-Dimensional Rigid Polygonal Body Moving Amidst Polygonal Barriers, Commun. Pure Appl. Math., 36 (1983), 345–398.MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Lozano-Perez, T.: Spatial Planning: A Configuration Space Approach, IEEE Trans. Comput., 32 (1983), 108–120.MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Koditschek, D.E.: Robot Planning and Control via Potential Functions, In: Robotics Review, (Khatib, O., Graig, J., and Lozano-Perez, T., Eds.) Cambridge, MA: MIT Press, 1, (1989).Google Scholar
  14. 14.
    Barraquand, J., and Latombe, J.C.: Nonholonomic Multi-Body Mobile Robots: Controllability and Motion Planning in the Presence of Obstacles, In: Proc. IEEE Intl. Conf. Robotics Automat., (1991), 2328–2335.Google Scholar
  15. 15.
    Donald, B.R.: Error Detection and Recovery for Robot Motion Planning with Uncertainty, Ph.D. Dissertation, Dept. EE&CS, MIT, 1987.Google Scholar
  16. 16.
    Khatib, O.: Real-Time Obstacle Avoidance for Manipulators and Mobile Robots, Int. J. Robotics Res., 5 (1986), 90–98.Google Scholar
  17. 17.
    Fox, D., Burgard, W. and Thrun, S.: The Dynamic Window Approach to Collision Avoidance, IEEE Robotics and Autom. Mag., 4 (1997), 23–33.CrossRefGoogle Scholar
  18. 18.
    De Luca, A., Oriolo, G.: Local Incremental Planning for Nonholonomic Mobile Robots, IEEE Int. Conf. on Robotics and Automation, San Diego, (1984).Google Scholar
  19. 19.
    Barraquand, J., and Latombe, J.C.: Robot Motion Planning: A Distributed Representation Approach, IJJR, 10 (1991).Google Scholar
  20. 20.
    De La Rosa, F., Najera, J., and Laugier, C.: Dealing with Uncertainty Constraints in Motion Planning, In: Intelligent Autonomous Systems, (Rembold, U., et.al., Eds.) IOS Press, (1995), 497–504.Google Scholar
  21. 21.
    De La Rosa, Laugier, C.F., and Najera, J.: Robust Path Planning in the Plane, IEEE Trans. Robotics Autom., 12 (1996), 347–353.CrossRefGoogle Scholar
  22. 22.
    Kant, K., and Zucker, S.: Trajectory Planning Problems, i: Determining Velocity Along a Fixed Path, In: Proc. of the IEEE 8th Int. Conf. Pattern Recogn., (1984), 196–198.Google Scholar
  23. 23.
    Kant, K., and Zucker, S.: Toward Efficient Trajectory Planning: The Path-Velocity Decomposition, Internationaljournal of Robotics Research, (1986), 72–89.Google Scholar
  24. 24.
    Kant, K., and Zucker, S.: Planning Collision-Free Trajectories in Time-Varying Environments: A Two-Level Hierarchy, In: Proc. of the 1988 IEEE International Conference on Robotics and Automation, (1988), 1644–1649.Google Scholar
  25. 25.
    Griswold, N., and Eem, J.: Control of Mobile Robots in the Presence of Moving Objects, IEEE Trans. Robotics Automat., 6 (1990), 263–268.CrossRefGoogle Scholar
  26. 26.
    Wu, C., and Jou, C.: Design of a Controlled Spatial Curve Trajectory for Robot Manipulators, Proc. 27th Conference on Decision and Control, (1988), 161–166.Google Scholar
  27. 27.
    Fujimura, K.: Motion Planning in Time-Varying Environments, in: Recent Trends in Mobile Robots, (Zheng, Y.F., Ed.), World Scientific, Singapore, (1993), 33–54.Google Scholar
  28. 28.
    Fujimura, K.: Path Planning with Multiple Objectives, IEEE Robotics and Autom. Mag., 3 (1996), 33–38.Google Scholar
  29. 29.
    Gupta, K.K., and Guo, Z.: Motion Planning for Many Degrees of Freedom: Sequential Search with Backtracking, IEEE Trans. Robotics Automat., 11 (1995), 897–906.CrossRefGoogle Scholar
  30. 30.
    Faverjon, B.: Obstacle Avoidance Using an Octree in the Configuration Space of a Manipulator, In: IEEE Conf. Robotics and Automation, (1984), 504–512.Google Scholar
  31. 31.
    Gouzenes, L.: Strategies for Solving Collision-Free Trajectories Problems for Mobile and Manipulator Robots, Int. J. Robotics Res., 3 (1984), 51–65.Google Scholar
  32. 32.
    Lozano-Perez, T.: A Simple Motion Planning Algorithm for General Robot Manipulators, IEEE Trans. Robotics Automat., 3 (1987), 224–238.CrossRefGoogle Scholar
  33. 33.
    Hasegawa, T., and Terasaki, H.: Collision Avoidance: Divide and Conquer Approach by Space Characterization and Intermediate Goals, IEEE Trans. Syst, Man. Cyber., 18 (1988), 337–437.CrossRefGoogle Scholar
  34. 34.
    Kondo, K.: Motion Planning with Six Degrees of Freedom by Multi-Strategic Bidirectional Heuristic Free-Space Enumeration, IEEE Trans. Robotics Automat., 7 (1991), 278–288.CrossRefGoogle Scholar
  35. 35.
    Gupta, K.K.: Fact Collision Avoidance for Manipulator Arms: A Sequential Search Strategy, IEEE Trans. Robotics Automat., 6 (1990), 522–532.CrossRefGoogle Scholar
  36. 36.
    Gupta, K.K and Guo, Z.: Toward Practical Motion Planners: Experiments with a Sequential Search Strategy, In: Int. Conf. Robotics and Automation, (1991), 1006–1011.Google Scholar
  37. 37.
    Faverjon, B, and Tournassoud, P.: A Local Based Approach for Path Planning of Manipulators with a High Number of Degrees of Freedom, In: IEEE Conf. Robotics and Automation, (1987), 1152–1159.Google Scholar
  38. 38.
    Shan, Y., and Koren, Y.: Obstacle Accommodation Motion Planning, IEEE Trans. Robotics Automat., 11 (1995), 36–49.CrossRefGoogle Scholar
  39. 39.
    Lück, C.L.: Self-Motion Representation and Global Path Planning Optimization for Redundant Manipulators through Topology-Based Discretization, J. Int. Robotic Syst., 19 (1997), 23–38.CrossRefGoogle Scholar
  40. 40.
    Seereeram, S, and Wen, J.T.: A Global Approach to Path Planning for Redundant Manipulators, IEEE Trans. Robotics Automat, 11 (1995), 152–160.CrossRefGoogle Scholar
  41. 41.
    Baillieul, J.: Kinematic Programming Alternatives for Redundant Manipulators, In: Proc. 1985 IEEE Robotics and Autom. Conf., (1985), 722–728.Google Scholar
  42. 42.
    Chang, P.H.: A Closed-Form Solution for Inverse Kinematics of Robot Manipulators with Redundancy, IEEE Trans. Robotics Automat., 3 (1987), 393–403.CrossRefGoogle Scholar
  43. 43.
    Seraji, H.: Configuration Control of Redundant Manipulators: Theory and Implementation, IEEE Trans. Robotics Automat., 5 (1989), 472–490.CrossRefGoogle Scholar
  44. 44.
    Klein, C.A. and Huang, C.H.: Review of Pseudoinverse Control for Use with Kinematically Redundant Manipulators, IEEE Trans. Syst., Man, Cybernet., 13 (1983), 245–250.CrossRefGoogle Scholar
  45. 45.
    Wampler, C. W.: Inverse Kinematic Functions for Redundant Manipulators, In: Proc. IEEE Int. Conf Robotics Automat, (1987), 610–617.Google Scholar
  46. 46.
    Kircanski, M., and Vukibratovic, M.: Trajectory Planning for Redundant Manipulators in the Presence of Obstacles, In: Preprints 5th CISM-IFToMM Symp. Theory and Practice of Robots and Manipulators, (1984), 43–50.Google Scholar
  47. 47.
    Hollerbach, J.M., and Suh, K.C.: Redundancy Resolution of Manipulators through Torque Optimization, In: Proc. 1985 IEEE Robotics and Autom. Conf., (1985), 308–315.Google Scholar
  48. 48.
    Yoshikawa, T: Dynamic Manipulability of Robot Manipulators, J. Robotic Syst., 2 (1985), 113–124Google Scholar
  49. 49.
    Klein, C.A., and Blaho, B.E.: Dexterity Measures for the Design and Control of Kinematically Redundant Manipulators, Int. J. Robotics Res., 6 (1987), 72–83.CrossRefGoogle Scholar
  50. 50.
    Chiu, S.L.: Control of Redundant Manipulators for Task Compatibility, In: Proc. 1987 IEEE Robotics and Autom. Conf., (1987), 1718–1724.Google Scholar
  51. 51.
    Kazerounian, K., and Wang, Z.: Global versus Local Optimization in Redundancy Resolution of Robotic Manipulators, Int. J. Robotics Res., 7 (1988), 3–12.Google Scholar
  52. 52.
    Baillieul, J., Martin, D.P., and Hollerbach, J.M.: Resolution of Kinematic Redundancy Using Optimization Techniques, IEEE Trans: Automat Cont., 5 (1989), 529–533.Google Scholar
  53. 53.
    Lee, J.K., and Cho, H.S.: Mobile Manipulator Motion Planning for Multiple Tasks Using Global Optimization Approach, J. Int. Robotics Res., 18 (1997), 169–190.CrossRefGoogle Scholar
  54. 54.
    Seraji, H.: Configuration Control of Rover-Mounted Manipulators, In: Proc. IEEE Int. Conf. on Robotics and Automation, (1995), 2261–2266.Google Scholar
  55. 55.
    Pin, F.G., and Culioli, J.C.: Optimal Positioning of Combined Mobile Platform Manipulator Systems for Material Handling Tasks, J. Intelligent and Robotic Systems, 6 (1992), 165–182.Google Scholar
  56. 56.
    Zhao, M., Ansari, N., and Hou, E.S.: Mobile Manipulator Path Planning by a Geretic Algorithm, J. Robotic Systems, 11 (1994), 143–153.MATHCrossRefGoogle Scholar
  57. 57.
    Yamamoto, Y., and Yun, X.: Coordinating Locomotion and Manipulation of a Mobile Manipulator, In: Recent Trends in Mobile Robots, (Zheng, Y.F.,Ed.), World Scientific, 1993.Google Scholar
  58. 58.
    Jacobs, P., Laumond, J-P., and Taix, M.: A Complete Iterative Motion Planner for a Car-Like Robot, J. Geom. Algorithm., (1990).Google Scholar
  59. 59.
    Hague, T., and Cameron, S.: Motion Planning for Nonholonomic Industrial Robot Vehicles, In: IEEE/RSJ Int. Workshop Intell. Robots Syst., Japan, (1991), 1275–1280.Google Scholar
  60. 60.
    Cherif, M., and Laugier, C.: On Physically-Based Modelling and Off-Road Vehicle Motion Planning, In: Intelligent Autonomous Systems, (Rembold, U., et al., Eds.), IOS Press, 1995.Google Scholar
  61. 61.
    Li, Z., and Canny, J.: Motion of Two Rigid Bodies with Rolling Constraints, IEEE Trans. Robotics Automat., 6 (1990), 62–72.CrossRefGoogle Scholar
  62. 62.
    Barraquand, J., and Latombe, J.C.: On Non-holonomic Mobile Robots and Optimal Maneuvering, Revue d'Intelligence Artificielle, 3 (1989), 77–103.Google Scholar
  63. 63.
    Laumond, J.-P., Jacobs, P., Taix, M., and Murray, R.M.: A Motion Planner for Nonholonomic Mobile Robots, IEEE Trans. Robotics Automat., 10 (1994), 577–593.CrossRefGoogle Scholar
  64. 64.
    Divelbiss, A.W., and Wen, J.T.: A Path Space Approach to Nonholonomic Motion Planning in the Presence of Obstacles, IEEE Trans. Robotics Automat., 13 (1997), 443–451.CrossRefGoogle Scholar
  65. 65.
    Conte, G., and Zulli, R.: Hierarchical Path Planning in a Multi-Robot Environment with a Simple Navigation Function, IEEE Trans. Syst., Plan, Cybernet., 25 (1995) 651–655.CrossRefGoogle Scholar
  66. 66.
    Chien, Y.P., and Xue, Q.: Path Planning for Two Planar Robots Moving in Unknown Environment, IEEE Trans. Syst., Man, Cybernet., 22 (1992), 307–317.CrossRefGoogle Scholar
  67. 67.
    Arai, T., and Ota, J.: Motion Planning of Multiple Mobile Robots Using Dynamic Groups, In: Recent Trends in Mobile Robots, (Zheng, Y.F., Ed.), World Scientific, 1993.Google Scholar
  68. 68.
    Wang, P.K.C.: Interaction Dynamics of Multiple Mobile Robots with Simple Navigation Strategies, J. Robotics Systems, 6 (1989), 77–101.MATHCrossRefGoogle Scholar
  69. 69.
    Arai, T., Ogata, H., and Suzuki, T.: Collision Avoidance among Multiple Robots Using Virtual Impedance, In: Proc. IROS′89, (1989), 479–485.Google Scholar
  70. 70.
    Schweikard, A., Adler, J.R., and Latombe, J.C.: Motion Planning in Stereotaxic Radiosurgery, IEEE Trans. Robotics Autom. 9 (1993), 764–774.CrossRefGoogle Scholar
  71. 71.
    Kyriakopoulos, K.J., and Saridis, G.N.: Optimal and Suboptimal Motion Planning for Collision Avoidance of Mobile Robots in Non-stationary Environments, J. Intelligent and Robotics Systems, 11 (1995), 223–267.MATHCrossRefGoogle Scholar
  72. 72.
    Kyriakopoulos, K.J., and Saridis, G.N.: Minimum Distance Estimation and Collision Prediction under Uncertainty for On-Line Robotic Motion Planning, In: Proc. of the 1990 IFAC World Congress, (1990).Google Scholar
  73. 73.
    Kyriakopoulos, K.J., and Saridis, G.N.: Collision Avoidance of Mobile Robots in Non-Stationary Environments, In: Proc. of the 1991 International Conference on Robotics and Automation, (1991).Google Scholar
  74. 74.
    Kyriakopoulos, K.J., and Saridis, G.N.: Distance Estimation and Collision Prediction for On-Line Robotic Motion Planning, Automatica, 28 (1992), 389–394.MathSciNetMATHCrossRefGoogle Scholar
  75. 75.
    Cho, H.K., Lee, B.H, and Ko, M.S.: Time-Optimal Motion of a Cooperating Multiple Robot System Along a Prescribed Path, IEEE Trans. Syst. Man Cyber., 25 (1995), 1648–1657.CrossRefGoogle Scholar
  76. 76.
    Dahl, O., and Nielsen, L.: Torque Limited Path Following by On-Line Trajectory Time Scaling, IEEE Trans. Robotics Automat., 6 (1991).Google Scholar
  77. 77.
    Dahl, O.: Path-Constrained Robot Control with Limited Torques-Experimental Evaluation, IEEE Trans. Robotics Automat., 10 (1994), 658–669.CrossRefGoogle Scholar
  78. 78.
    Hu, T.C., Kahng, A.B., and Robins, G.: Optimal Robust Path Planning in General Environments, IEEE Trans. Robotics Automat., 9 (1993), 775–784.CrossRefGoogle Scholar
  79. 79.
    Slotine, J.J.E., and Li, W.: Applied Nonlinear Control, Prentice Hall, Englewood Cliffs, New Jersey, 1991.Google Scholar
  80. 80.
    Su, C.Y., and Leung, T.P.: A Sliding Mode Controller with Bound Estimation for Robot Manipulators, IEEE Trans. Robotics Automat, 9 (1993), 208–214.CrossRefGoogle Scholar
  81. 81.
    Guldner, J., and Utkin, V.I.: Sliding Mode Control for Gradient Tracking and Robot Navigation Using Artificial Potential Fields, IEEE Trans. Robotics Automat., 11(1995), 247–254.CrossRefGoogle Scholar
  82. 82.
    Tzafestas, S.G., Raibert, M., and Tzafestas, C.S.: Robust Sliding Mode Control Applied to a 5-Link Biped Robot, J. Intelligent and Robotic Systems, 15 (1996), 67–133.CrossRefGoogle Scholar
  83. 83.
    Kung, C.C, and Lin, S.C.: Fuzzy Controller Design: A Sliding Mode Approach, In: Fuzzy Reasoning in Information, Decision and Control Systems, (Tzafestas, S.G., and Venetsanopoulos, A.N., Eds.), Kluwer, Dordrecht-Boston, 1994.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • S. G. Tzafestas
    • 1
  • M. P. Tzamtzi
    • 1
  • G. G. Rigatos
    • 1
  1. 1.Intelligent Robotics and Automation Laboratory, Department of Electrical and Computer EngineeringNational Technical University of AthensZographou, AthensGreece

Personalised recommendations