Skip to main content

Carbon content of some freshwater rotifers

  • Conference paper
Rotifera VIII: A Comparative Approach

Part of the book series: Developments in Hydrobiology ((DIHY,volume 134))

  • 357 Accesses

Abstract

Carbon content of rotifers from 14 species (Keratella cochlearis, K. c. tecta, K. c. hispida, K ticinensis, K. quadrata, Polyarthra remata, P. vulgaris, P. major, P. euryptera, Synchaeta sp., S. stylata, S. pectinata, Trichocerca capucina, Asplanchna priodonta) was determined with the high temperature combustion method of Salonen (1979). Rotifers for the carbon analysis were collected from different fresh water bodies in Russia (Lake Ladoga) and Finland (lakes Pohjalampi, Varaslampi, and two small ponds in Lammi). Average individual carbon mass of rotifers varied between 0.0064 and 0.058 μg in Keratella spp., 0.012 and 0.051 μg in Polyarthra spp., 0.020 and 0.133 μg in Synchaeta spp., 0.162 and 0.555 μg in A. priodonta. The carbon level in the studied rotifer species differed 100-fold ranging from 0.31% WW in A. priodonta to 31.5% WW in K. c. tecta. Body length/carbon mass and body volume/carbon mass regressions were established for the studied rotifers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aasa, R., 1970. Plankton i Lilla Ullevifjarden. Nat. Swedish Environm. Protection Board, Limnol. Surv. Uppsala, Rep. 33: 1–62.

    Google Scholar 

  • Balushkina, E. V. & G. G. Winberg, 1979. Svyaz mezhdu massoi i dlinoi tela u planktonnykh zhivotnykh. /The relationship between mass and body length of the planktonic animals. In Winberg, G. G. (ed.), Obshchie osnovy izucheniya vodnykh ekosistem. Nauka, Leningrad: 169–172 (in Russian).

    Google Scholar 

  • Bottrell, H. H., A. Duncan, Z. M. Gliwicz, E. Grygierek, A. Herzig, A. Hillbricht-Ilkowska, H. Kurasawa, P. Larsson & T. Weglenska, 1976. A review of some problems in zooplankton production studies. Norw. J. Zool. 24: 419–456.

    Google Scholar 

  • Dumont, H. J., I. Van de Velde & S. Dumont, 1975. The dry weight estimate of biomass and a selection of Cladocera, Copepoda and Rotifera from the plankton, periphyton and benthos of continental waters. Oecologia (Berl) 19: 75–97.

    Article  Google Scholar 

  • Duncan, A., W. Lampert & O. Rocha, 1985. Carbon weight on length regressions of Daphnia spp. grown at threshold food concentrations. Verh. int. Verein. Limnol. 22: 3109–3115.

    Google Scholar 

  • Guisande, C., J. Toja & N. Mazuelos, 1991. The effect of food on protein content in rotifer and cladoceran species: a field correlational study. Freshwat. Biol. 26: 433–438.

    Article  Google Scholar 

  • Hessen, D. O. & A. Lyche, 1991. Inter-and intraspecific variations in zooplankton element composition. Arch. Hydrobiol. 121: 343–353.

    Google Scholar 

  • Latja, R. & K. Salonen, 1978. Carbon analysis for the determination of individual biomasses of planktonic animals. Verh. int. Ver. Limnol. 20: 2556–2560.

    Google Scholar 

  • Makarewich, J. C. & G. E. Likens, 1979. Structure and function of the zooplankton community in Mirror lake, New Hampshire. Ecol. Monogr. 49: 109–127.

    Article  Google Scholar 

  • McCauley, E., 1984. The estimation of abundance and the biomass of zooplankton in samples. In Downing, J. A. & F. H. Rigler, (eds), A Manual on Methods for the Assessment of Secondary Productivity in Fresh Waters. Blackwell Scientific Publications, Boston: 228–265.

    Google Scholar 

  • Narita, T. & S. Mori, 1975. Secondary production of Zooplankton. In Mori, S. & G. Yamamoto (eds), Productivity of Communities in Japanese Inland Waters. JIBP Synthesis 10: 22–25.

    Google Scholar 

  • Naulapaa, A., 1966. Eraiden Suomessa esiintyvien planktereiden tilavuuksien keskiarvoja. Mean volumes for some plankters found in Finland. Vesiensuojelutoimiston tiedonantoja 21: 1–26.

    Google Scholar 

  • Rahkola, M., J. Karjalainen & V A. Avinsky, 1998. Individual weight estimates of zooplankton based on length-weight regressions in Lake Ladoga and Saimaa lake system. Nordic Journ. of Freshwater Research, in press.

    Google Scholar 

  • Ruttner-Kolisko, A., 1977. Suggestions for biomass calculation of planktonic rotifers. Arch. Hydrobiol. Beih. Ergebn. Limnol. 8: 71–76.

    Google Scholar 

  • Salonen, K., 1979. A versatile method for the rapid and accurate determination of carbon by high temperature combustion. Limnol. Oceanogr. 24: 177–187.

    Article  CAS  Google Scholar 

  • Salonen, K., 1981. Rapid and precise determination of total inorganic carbon and some gases in aqueous solutions. Wat. Res. 15: 403–406.

    Article  CAS  Google Scholar 

  • Salonen, K. & J. Sarvala, 1980. The effect of different preservation methods on the carbon content of Megacyclops gigas. Hydrobiologia 72: 281–285.

    Article  CAS  Google Scholar 

  • Salonen, K. & R. Latja, 1988. Variation in the carbon content of two Asplanchna species. Hydrobiologia 162: 79–87.

    Article  Google Scholar 

  • Salonen, K., J. Sarvala, I. Hakala & M.-L. Viljanen, 1976. The relation of energy and organic carbon in aquatic invertebrates. Limnol. Oceanogr. 21: 724–730.

    Article  CAS  Google Scholar 

  • Sprules, W. G. & M. Munawar, 1991. Plankton community structure in Lake St. Clair, 1984. Hydrobiologia 219: 229–237.

    Article  Google Scholar 

  • Sterner, R. W. & D. O. Hessen, 1994. Algal nutrient limitation and the nutrition of aquatic herbivores. Annu. Rev. Ecol. Syst. 25: 1–29.

    Article  Google Scholar 

  • Telesh, I. V., 1995. Rotifer assemblages in the Neva Bay, Russia: principles of formation, present state and perspectives. Hydrobiologia 313/314: 57–62.

    Article  Google Scholar 

  • Telesh, I. V., 1998. Species diversity and distribution of rotifers in Lake Ladoga, Russia. J. Boreal Environ. Res., in press.

    Google Scholar 

  • Vasama, A. & P. Kankaala, 1990. Carbon-length regressions of planktonic crustaceans in Lake Ala-Kitka (NE-Finland). Aqua Fenn. 20: 95–102.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

E. Wurdak R. Wallace H. Segers

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Telesh, I.V., Rahkola, M., Viljanen, M. (1998). Carbon content of some freshwater rotifers. In: Wurdak, E., Wallace, R., Segers, H. (eds) Rotifera VIII: A Comparative Approach. Developments in Hydrobiology, vol 134. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4782-8_47

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4782-8_47

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6009-7

  • Online ISBN: 978-94-011-4782-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics