Advertisement

Direct Somatic Embryogenesis from Leaves of Camellia japonica

  • M. C. Pedroso
  • M. S. Pais
Part of the Forestry Sciences book series (FOSC, volume 59)

Abstract

Camellia japonica L, commonly known as camellia, is an evergreen ornamental plant of the Theaceae family. Native from Eastern Asia, its origin is still controversial, being considered by some as a species indigenous from Japan and, by others, from China (Ta and Leng, 1983). It was introduced into Europe by the Portuguese in 1542 (Anderson, 1961) and soon spread to Spain, England, France and Italy. It was later introduced into the United States at the beginning of the 18th century, and in Australia during the mid 19th century.

Keywords

Somatic Embryo Somatic Embryogenesis Embryo Formation Globular Embryo Calcium Oxalate Crystal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, E.B. 1961. Camellias. 1st edn. London: Richard Clay & Co, Ltd.Google Scholar
  2. Bailey, L.H. 1927. Camellia. In: The Standard Cyclopedia of Horticulture, Vol. I A-E, 6th edn. pp. 641. London: Macmillan Co, Ltd.Google Scholar
  3. Barciela, J. and A.M. Vieitez. 1993. Anatomical sequence and morphometric analysis during somatic embryogenesis on cultured cotyledon expiants of Camellia japonica L. Ann Bot. 71: 395–404.CrossRefGoogle Scholar
  4. Barrôco, R., M.C. Pedroso and M.S. Pais. 1994. Induction of high frequency somatic embryogenesis in Camellia japonica (BV P01). II Congresso Ibérico de Biotecnologia, Biotec 94, Vilamoura, Algarve, 1–4 October.Google Scholar
  5. Bennett, W.Y. 1977. Tissue culture of Camellias? Am Camellia Yearb. 188–190.Google Scholar
  6. Bennett, W.Y. 1978. Tissue culture for Camellias.II. Am Camellia Yearb. 102–104.Google Scholar
  7. Bennett, W.Y. and P. Scheibert. 1982. In vitro generation of callus and plantlets from cotyledons of Camellia japonica. Camellia J. 37: 12–15.Google Scholar
  8. Bruun, L. 1992. In situ and in vitro aspects of embryo-ovule interactions in intra-and interspecific beet crosses. In: Sexual Plant Reproduction, pp. 185–191. (eds. M. Cresti and A. Terzi). Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
  9. Encke, F. 1960. Farn. Theaceae. In: Pareys Blumengärtnerei, Vol II, pp. 45–48. Berlin: Paul Rorey.Google Scholar
  10. Feijão, R.O. 1960. Elucidário Fitolôgico — Plantas vulgares de Portugal Continental, Insular e Ultramarino, Vol IA-H, pp. 189. Lisboa: Institute Botânico de Lisboa.Google Scholar
  11. Ferrão, J.E.M. and A.M. Ferrão. 1982. A semente de Camellia japonica L. como oleaginosa. Lisboa: Departamento Central de Estudos e Análises Industriais, L.N.E.T.I.Google Scholar
  12. Jain, S.M. and R.J. Newton. 1990. Prospects of biotechnology for tea improvement. Proc Indian Natl Sci Acad. B56: 441–448.Google Scholar
  13. Jain, S.M., P.K. Gupta and R.J. Newton. 1995. Somatic Embryogenesis in Woody Plants, Vol. 2, Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  14. Jain, S.M., E.J. Soltes and R.J. Newton. 1988. Enhancement of somatic embryogenesis in Norway spruce (Picea abies). Theor Appl Genet. 76: 501–506.CrossRefGoogle Scholar
  15. Jensen, W.A. 1962. Botanical Histochemistry. San Francisco: WH Freeman.Google Scholar
  16. Jha, T.B., S. Jha and S.K. Sen. 1992. Somatic embryogenesis from immature cotyledons of an elite Darjeeling tea clone. Plant Sci. 84: 209–213.CrossRefGoogle Scholar
  17. Johansen, D.A. 1940. Plant Microtechnique. London: McGraw-Hill.Google Scholar
  18. Karp, A. 1991. On the current understanding of somaclonal variation. In: Oxford Surveys of Plant Molecular and Cell Biology, Vol 7, pp. 1–58. (ed. B.J. Miflin). Oxford University Press.Google Scholar
  19. Karp, A. 1994. Origins, causes and uses of variation in plant tissue cultures. In: Plant Cell and Tissue Culture, pp. 139–151. (eds. I.K. Vasil and T.A. Thorpe). Dordrecht: Kluwer Academic Publishers.Google Scholar
  20. Karp, A. and S.W.J. Bright. 1985. On the causes and origins of somaclonal variations. In: Oxford Surveys of Plant Molecular and Cell Biology, Vol 2, pp. 199–234. (ed. B.J. Miflin). Oxford University Press.Google Scholar
  21. Kato, M. 1982. Results of organ culture on Camellia japonica and C. sinensis. Jpn J Breed. 32(Suppl.2): 276–277.Google Scholar
  22. Kato, M. 1986. Micropropagation through cotyledon culture of Camellia japonica L and C. sinensis L. Jpn J Breed. 36: 31–38.Google Scholar
  23. Kato, M. 1989. Camellia sinensis L. (Tea): In vitro regeneration. In: Biotechnology in Agriculture and Forestry, Vol 7: Medical and Aromatic Plants II, pp. 82–89. (ed. Y.P.S. Bajaj). Berlin/Heidelberg: Springer-Verlag.Google Scholar
  24. Kohlenbach, H.W. 1997. Basic aspects of differentiation and plant regeneration from cell and tissue cultures. In: Plant Tissue Culture and Its Biotechnological Applications, pp 355–366. (eds. W. Barz, E. Reinhard and M.H. Zenk). Heidelberg: Springer-Verlag.Google Scholar
  25. Larkin, P.J. and W.R. Scowcroft,. 1981. Somaclonal variation-a novel source of variability from cell cultures for plant improvement. Theor Appl Genet. 67: 443–455.Google Scholar
  26. Murashige, T. and E Skoog. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant. 15: 473–497.CrossRefGoogle Scholar
  27. Pedroso, M.C. and M.S. Pais. 1992. A scanning electron microscope and X-ray micro-analysis study during induction of morphogenesis in Camellia japonica L. Plant Sci. 87: 99–108.CrossRefGoogle Scholar
  28. Pedroso, M.C. and M.S. Pais. 1993. Direct embryo formation in leaves of Camellia japonica L. Plant Cell Rep. 12: 639–643.CrossRefGoogle Scholar
  29. Pedroso, M.C. and M.S. Pais. 1994. Early detection of embryogenic competence and of polarity in Camellia japonica L. by electron probe X-ray microanalysis. Plant Sci. 96: 189–201.CrossRefGoogle Scholar
  30. Pedroso, M.C. and M.S. Pais. 1995a. Expiant region-specific embryogenic competence and plant recovery in Camellia japonica. In Vitro Cell Dev Biol. 31P: 8–14.Google Scholar
  31. Pedroso, M.C. and M.S. Pais. 1995b. Plant regeneration from embryogenic suspension cultures of Camellia japonica. In Vitro Cell Dev Biol. 31P: 31–35.Google Scholar
  32. Pedroso, M.C. and M.S. Pais. 1995c. Factors controlling somatic embryogenesis. Cell wall changes as an in vivo marker of embryogenic competence. Plant Cell Tiss Org Cult. 43: 147–154.CrossRefGoogle Scholar
  33. Pedroso, M.C. and M.S. Pais. 1996. The involvement of zinc in somatic embryogenesis. Plant Embryogenesis Workshop Abstract Book: from single cell to plant. Progress toward understanding zygotic, androgenic and somatic embryogenesis. September 12–14, Hamburg, Germany, pp. 48. University of Hamburg.Google Scholar
  34. Pedroso, M.C. and M.S. Pais, 1997. Anther and microspore culture in Camellia japonica. In: In Vitro Haploid Production in Higher Plants, Vol. 5, pp. 89–107. (eds. S.M. Jain, S.K. Sopory and R.E. Veilleux). Dordrecht: Kluwer Academic.Google Scholar
  35. Pedroso, M.C., S. Jorge and M.S. Pais. 1994. Embryogenesis from unpollinated ovules in Camellia japonica. In: Abstracts of the VIIIth International Congress of Plant Tissue and Cell Culture, IAPTC, Firenze, June 12–17, pp. 179.Google Scholar
  36. Pedroso, M.C., S. Lopes and M.S. Pais. 1990. Embriogenese somática em Camellia japonica L. (BV20). In: Abstracts of the V National Congress of Biotechnology, Braga, Portugal. Universidade de Minho.Google Scholar
  37. Pedroso, M.C., J-L. Hilbert, J. Vasseur and M.S. Pais. 1996. Polypeptides associated with the induction of direct somatic embryogenesis in Camellia japonica leaves. I. Selection of two embryogenic-specific polypeptides. J Exp Bot. 46: 1579–1584.CrossRefGoogle Scholar
  38. Pedroso, M.C., N. Primikirios, K.A. Roubelakis-Angelakis and M.S. Pais]. 1997. Free and conjugated polyamines in embryogenic and non-embryogenic leaf-regions of camellia leaves before and during direct somatic embryogenesis. Physiol Plant. 100: 213–219CrossRefGoogle Scholar
  39. Pedroso-Ubach, M.C 1991. Contribuição para a preservação e o melhoramento de Camellia japonica L. (English abstract). Master Thesis. Faculdade de Ciências da Universidade de Lisboa, Lisboa, pp. 23–50; 89-103.Google Scholar
  40. Pedroso-Ubach, M.C. 1994. Somatic embryogenesis in Camellia japonica L.: a search for markers. Ph.D. Thesis. Faculdade de Ciências da Universidade de Lisboa, Lisboa, pp. 22–103; 134-169.Google Scholar
  41. San-José, M.C and A.M. Vieitez. 1993. Regeneration of Camellia plantlets from leaf explant cultures by embryogenesis and caulogenesis. Sci Hort. 54: 303–315.CrossRefGoogle Scholar
  42. Sterk P., H. Booij, G.A. Schellekens and S.C. De Vries. 1991. Cell-specific expression of the carrot EP2 lipid transfer protein gene. Plant Cell. 3: 907–921.PubMedGoogle Scholar
  43. Steward, F.C., M.O. Mapes and K. Mears. 1958. Growth and organized development of cultured cells. II. Organization in cultures grown from freely suspended cells. Am J Bot. 45: 705–708.CrossRefGoogle Scholar
  44. Ta, C.H. and S.Y. Leng. 1983. Studies and applications of Camellia. Int Camellia J. 15: 66–72.Google Scholar
  45. Thorpe T.A. 1980. Organogenesis in vitro: structural, physiological and biochemical aspects. Int Rev Cyto Suppl. 11A: 71–111.Google Scholar
  46. Tran Thanh Van, K. 1980. Control of morphogenesis by inherent and exogenously applied factors in thin cell layers. Int Rev Cytol. 11A: 175–194.Google Scholar
  47. Tran Thanh Van, K. and C.A. Gendy. 1993. Markers of plant morphogenesis. In: Morphogenesis in Plants — Molecular Approaches. NATO ASI Series A, Vol 253. pp. 19–54. (eds. K.A. Roubelakis-Angelakis and K. Tran Thanh Van). New York: Plenum Press.Google Scholar
  48. Vieitez, A.M. 1995. Somatic embryogenesis in Camellia spp. In: Somatic Embryogenesis in Woody Plants, Vol. 2. pp. 235–276. (eds. S.M. Jain, P.K. Gupta and R.J. Newton). Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  49. Vieitez, A.M. and J. Barciela. 1990. Somatic embryogenesis and plant regeneration from embryonic tissues of Camellia japonica L. Plant Cell Tiss Org Cult. 21: 267–274.CrossRefGoogle Scholar
  50. Vieitez, A.M., M.C. San-José, F.J. Vieitez and A. Ballester. 1991. Somatic embryogenesis from roots of Camellia japonica plantlets cultured in vitro. J Am Soc Hort Sci. 116: 753–757.Google Scholar
  51. Vieitez, A.M., M.L. Vieitez, A.M. Ballester and E. Vieitez. 1992. Micropropagation of Camellia spp. In: Biotechnology in Agriculture and Forestry. High-Tech and Micropropagation III, Vol. 19. pp. 361–387. (ed. Y.P.S. Bajaj). Berlin/Heidelberg: Springer-Verlag.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • M. C. Pedroso
    • 1
  • M. S. Pais
    • 1
  1. 1.Centro de Biotecnologia Vegetal, Departamento de Biologia VegetalFaculdade de Ciências da Universidade de LisboaLisboaPortugal

Personalised recommendations