Skip to main content

Somatic Embryogenesis in Black Locust (Robinia pseudoacacia L.)

  • Chapter
Book cover Somatic Embryogenesis in Woody Plants

Part of the book series: Forestry Sciences ((FOSC,volume 59))

Abstract

Black locust (Robinia pseudoacacia L.) is a nitrogen fixing tree species and is planted globally. It grows rapidly, 2–6 cm/day (Hanover et al., 1992), and often out-competes weeds and other vegetation. This species has many beneficial attributes which facilitate the use of biotechnological approaches for genetically improving this tree legume. These include a small genome size (2.4 pg), amenability to tissue culture, and the relative ease with which it can be manipulated through Agrobacterium-mediated transformation (Han, 1991; Han et al., 1993a; reviewed in Han et al., 1998).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ammirato, P.V. and F.C. Steward. 1971. Some effects of the environment on the development of embryos from cultured free cells. Bot Gaz. 132: 149–158.

    Article  Google Scholar 

  • Arrillaga, I., J.J. Tobolski and S.A. Merkle. 1994. Advances in somatic embryogenesis and plant production of black locust (Robinia pseudoacacia L.) Plant Cell Rep. 13: 171–175.

    Article  CAS  Google Scholar 

  • Ashby, W.C., W.G. Vogel and N.F. Rogers. 1985. Black Locust in the Reclamation Equation USDA For. Serv. Gen. Tech. Rep. NE-105. 12pp.

    Google Scholar 

  • Baertsche, S.R., M.T. Yokoyama and J.W. Hanover. 1986. Short rotation, hardwood tree biomass as potential ruminant feed — chemical composition, nylon bag ruminai degradation and ensilement of selected species J Anim Sci. 63: 2028–2043.

    CAS  Google Scholar 

  • Barghchi, M. 1987. Mass clonal propagation in vitro of Robinia pseudoacacia L. (black locust) cv. ‘Jaszkiseri’ Plant Sci. 53: 183–189.

    Article  CAS  Google Scholar 

  • Barrett, R.P., T. Mebrahtu and J.W. Hanover. 1988. Black locust: a multi-purpose tree species for temperate climates. In Advances in new crops, Proc. First National Symposium on new crops, October 23–26. (eds. J. Janick and J.E. Simon). Indianapolis, IN: Timber Press.

    Google Scholar 

  • Bonga, J.M. and P. Von Aderkas. 1992. In vitro Culture of Trees, Volume 38, pp 72–125. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Bridgen, M.R. 1992. Plantation silviculture of black locust. In Black Locust: Biology, Culture, and Utilization. Proc. International Conference on Black Locust, June 17–21, 1991, East Lansing, MI, USA, pp. 21–31 (eds. J.W. Hanover, K. Miller and S. Plesko). Michigan State University.

    Google Scholar 

  • Camara Machado, A.D., M. Puschmann, H. Puhringer, R. Kremen, H. Katinger and M. Laimer da Camara Machado. 1995. Somatic embryogenesis of Prunus subhirtella and regeneration of transgenic plants after Agrobacterium-mediated transformation. Plant Cell Rep. 14: 335–340

    Google Scholar 

  • Chalupa, V. 1992. Tissue culture propagation of black locust. In: Black Locust: Biology, Culture, and Utilization, Proc. International Conference on black locust, June 17–21, 1991, East Lansing, MI, USA, pp. 115–125. (eds. J.W. Hanover, K. Miller and S. Plesko). Michigan State University.

    Google Scholar 

  • Chalupa, V. 1995. Somatic embryogenesis in birch (Betula pendula Roth.). For Sci. 46: 137–151.

    Google Scholar 

  • Chapman, A.G. 1935. The effects of black locust on associated species with special reference to forest trees. Ecol Monogr. 5: 38–50.

    Article  Google Scholar 

  • Davis, J.M. and D.E. Keathley. 1985. Regeneration of shoots from leaf disk expiants of black locust, Robinia pseudoacacia L. In Proc. 4th North Central Tree Improvement Conference, East Lansing, MI, pp. 29–34. Michigan State University.

    Google Scholar 

  • Davis, J.M. and D.E. Keathley. 1987. Differential responses to in vitro bud culture in mature Robinia pseudoacacia L. (black locust). Plant Cell Rep. 6: 431–434.

    CAS  Google Scholar 

  • Davis, J.M. and D.E. Keathley. 1992. Micropropagation of black locust (Robinia pseudoacacia L.). In Biotechnology in Agriculture and Forestry, vol. 18, High-tech and micropropagation II, pp. 25–39 (ed. Y.P.S. Bajaj) Berlin: Springer Verlag.

    Google Scholar 

  • Ellis, D.D., D.E. McCabe, S. McInnis, R. Ramachandran, D.R. Russell, K.M. Wallace, B.J. Martinell, D.R. Raffa, and B.H. McCown. 1993. Stable transformation of Picea glauca by particle acceleration. Bio Technol. 11: 84–89.

    CAS  Google Scholar 

  • Finer, J.J. and A. Nagasawa. 1988. Development of an embryogenic suspension culture of soybean [Glycine max (L.) Merrill]. Plant Cell Tiss Org Cult. 15: 125–136.

    Article  CAS  Google Scholar 

  • Fitch, M.M.M., R.M. Manshardt, D. Gonsalves and J.L. Slightom. 1993. Transgenic papaya plants from Agrobacterium-mediated transformation of somatic embryos. Plant Cell Rep. 12: 245–249.

    Article  CAS  Google Scholar 

  • Fredou, C. and T. Pauly. 1974. Peut-on-reboiser les de-charge d’ordures menagers? Rev For Fr. 26: 81–90.

    Article  Google Scholar 

  • Geneve, R.L. and S.T. Kester. 1990. The initiation of somatic embryos and adventitious roots from developing zygotic embryo expiants of Cercis canadensis L. cultured in vitro. Plant Cell Tiss Org Cult. 22: 71–76.

    CAS  Google Scholar 

  • Gharyal, P.K. and S.C. Maheshwari. 1981. In vitro differentiation of somatic embryoids in a leguminous tree — Albizzia lebbeck L., Naturwissenschaften. 68: 379–380.

    Article  Google Scholar 

  • Gosal, S.S., M.I.S. Gill and H.S. Grewal. 1995. Somatic embryogenesis in Citrus species, eds: S.M. Jain, P.K. Gupta and R.J. Newton. Somatic embryogenesis in Woody Plants. 2. Angiosperms, pp 1–21. Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Gray, D.J. 1996. Nonzygotic embryogenesis, In, Plant Tissue Culture Concepts and Laboratory Exercises, pp. 133–147 (eds. R.N. Trigiano and D.J. Gray). Tokyo: CRC Press.

    Google Scholar 

  • Gray, D.J., and A. Purohit. 1991. Somatic embryogenesis and the development of synthetic seed technology. Crit Rev Plant Sci. 10: 33–61.

    Article  Google Scholar 

  • Gronroos, L., S. von Arnold and T. Eriksson. 1989. Callus production and somatic embryogenesis from floral expiants of basket willow (Salix viminalis L.) J Plant Physiol. 134: 558–566.

    Article  Google Scholar 

  • Haissig, B.E., N.D. Nelson and G.H. Kidd. 1987. Trends in the use of tissue culture in forest improvement. Bio/Technology 5: 52–59.

    Article  Google Scholar 

  • Han, K.-H. 1991. Agrobacterium rhizogenes-mediated transformation and plant regeneration from normal and transgenic tissues of Robinia pseudoacacia L. Ph.D. thesis, Michigan State University, East Lansing, MI, U.S.A.

    Google Scholar 

  • Han, K.-H. and D.E. Keathley. 1988. Isolation and culture of protoplasts from callus tissue of black locust (Robinia pseudoacacia L.), Nitrogen Fixing Tree Res Rep 6: 68–70.

    Google Scholar 

  • Han, K.-H. and D.E. Keathley. 1989. Regeneration of whole plants from seedling-derived callus of black locust. Nitrogen Fixing Tree Res Rev. 7: 112–114.

    Google Scholar 

  • Han, K.-H., J.M. Davis and D.B. Keathley. 1990. Differential responses persist in shoot expiants regenerated from callus of two mature black locust trees. Tree Physiol. 6: 235–240.

    Article  PubMed  Google Scholar 

  • Han, K.-H., D.E. Keathley, J.M. Davis and M.P. Gordon. 1993a. Regeneration of a transgenic woody legume (Robinia pseudoacacia L., black locust) and morphological alterations induced by Agrobacterium rhizogenes-mediated transformation. Plant Sci. 88: 149–157.

    Article  Google Scholar 

  • Han, K.-H., D.E. Keathley and M.P. Gordon. 1993b. Cambial tissue culture and subsequent shoot regeneration from mature black locust (Robinia pseudoacacia L.). Plant Cell Rep. 12: 185–188.

    Article  Google Scholar 

  • Han, K.-H., H.D. Bradshaw and M.P. Gordon. 1995. Adventitious root and shoot regeneration in vitro is under major gene control in a F2 family of hybrid poplar (Populus trichocarpa × P. deltoides). Forest Genetics 1: 139–146.

    Google Scholar 

  • Han, K.-H., M.P. Gordon and S.H. Strauss. 1996. Cellular and molecular biology of Agrobacterium-mediated transformation of plants and its application to genetic transformation of Populus, In Biology of Populus and Its Implication for Management and Conservation. pp. 201–222 (eds. H.D.B.R.F. Stettler, Jr., P.E. Hedman and T.M. Hinckley). Ottawa: National Research Council of Canada.

    Google Scholar 

  • Han, K.-H., D.-I. Shin and D.E. Keathley. 1997. Tissue culture responses of expiants taken from branch sources with different degrees of juvenility in mature black locusts (Robinia pseudoacacia L.). Tree Physiol. 17: 671–675.

    Article  PubMed  Google Scholar 

  • Han, K.-H., M.P. Gordon and D.E. Keathley. 1998. Genetic transformation of black locust (Robinia pseudoacacia L.), Biotechnology in Agriculture and Forestry, (ed. Y.P.S. Bajaj). Berlin: Springer-Verlag.

    Google Scholar 

  • Hanover, J.W., K. Miller and S. Plesko. 1992. Black locust: an historical and future perspective. In Black locust: Biology, Culture, and Utilization. Proa, International Conference on Black Locust, June 17–21, 1991, East Lansing, MI, USA, pp. 7–18. (eds. J.W. Hanover, K. Miller, and S. Plesko). Michigan State University.

    Google Scholar 

  • Hayes, B. 1976. The black locust as a nectar source. Am Bee J. 226: 238.

    Google Scholar 

  • Hoffard, W.H. and R.L. Anderson. 1982. A guide to common insects, diseases and other problems of black locust. USDA Forest Service SA-FR-19.

    Google Scholar 

  • Iriondo, J.M., M.D. Iglesia and C. Perez. 1995. Micropropagation of Elaeagnus angustifolia from mature trees. Tree Physiol. 15: 691–693.

    Article  PubMed  Google Scholar 

  • Kennedy, J.M. 1983. Geographic variation in black locust (Robinia pseudoacacia L.), MS thesis, University of Georgia, GA, U.S.A.

    Google Scholar 

  • Keresztesi, B. 1983. Breeding and cultivation of black locust, Robinia pseudoacacia, in Hungary. For Ecol Manag. 6: 217–244.

    Article  Google Scholar 

  • Keresztesi, B. 1988. Black locust: the tree of agriculture. Outlook Agric. 17: 77–85.

    Google Scholar 

  • Kim, C.K., S.K. Lee and S.K. Hyun. 1973. Studies on radiation effect of seeds irradiated by X-ray and thermal neutron and some characteristics of irradiated black locust. Res Rep Inst For Genet. 10: 57–65

    Google Scholar 

  • Kochba, J. and J. Button. 1974. The stimulation of embryogenesis and embryoid development in habituated ovular callus from the’ shamouti’ orange (Citrus sinensis) as affected by tissue age and sucrose concentration. Z Pflanzenphysiol. 73: 415–421.

    Google Scholar 

  • Limstrom, G.A. 1960. Forestration of strip-mine land in the Central States. USDA Agric Handbook. 166: 74.

    Google Scholar 

  • Linsmaier, E. and F. Skoog. 1965. Organic growth factor requirement of tobacco tissue cultures. Physiol Plant. 18: 100–127.

    Article  CAS  Google Scholar 

  • Lloyd, G.B. and B.H. McCown. 1981. Commercially feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-up culture. Proc Int Plant Prop. Soc. 30: 421–427.

    Google Scholar 

  • McGranahan, G.A., C.A. Leslie, S.L. Uratsu, L.A. Martin and A.M. Dandekar. 1988. Agrobacterium-mediated transformation of walnut somatic embryos and regeneration of transgenic plants. Bio/Technology. 6: 800–804.

    Article  CAS  Google Scholar 

  • Mebrahtu, T. and J.W. Hanover. 1989. Heritability and expected gain estimates for traits of black locust in Michigan, Silvae Genet. 38: 125–130.

    Google Scholar 

  • Merkle, S.A. and A.T. Wiecko. 1989. Regeneration of Robinia pseudoacacia via somatic embryogenesis. Can J For Res. 19: 285–288.

    Article  Google Scholar 

  • Merkle, S.A. 1992. Somatic embryogenesis in black locust. In Black Locust: Biology, Culture, and Utilization, Proc. International Conference on Black Locust, June 17–21, 1991, East Lansing, MI, USA, pp. 136–146. (eds J.W. Hanover, K. Miller, and S. Plesko]). Michigan State University

    Google Scholar 

  • Merkle, S.A. 1994. Hardwood propagation and gene transfer via somatic embryogenesis. In International Symposium on Applications of Biotechnology to Tree Culture, Protection and Utilization. St. Paul, Minnesota, pp. 143–152.

    Google Scholar 

  • Merkle, S.A. and H.E. Sommer. 1986. Somatic embryogenesis in tissue cultures of Liriodendron tulipifrea Can J For Res. 16: 420–422.

    Article  Google Scholar 

  • Michler, C.H. 1995. Somatic embryogenesis in Populus spp., In Somatic Embryogenesis in Woody Plants, Vol. 2, pp. 89–97. (eds S.M. Jain, P.K. Gupta and R. Newton) Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Michler, C.H. and E.O. Bauer. 1991. High frequency somatic embryogeneses from leaf tissue of Populus spp. Plant Sci 77: 111–118.

    Article  CAS  Google Scholar 

  • Miller, R.O., P.D. Bloese and J.W. Hanover. 1987. Black locust: a superior short-rotation intensive culture species for biomass production in the lake states. In Proc. Inst. Gas Tech. 11th Annl. Mtg. on Energy from Biomass and Wastes, March 16, 1987, Orlando, FL. U.S.A.

    Google Scholar 

  • Montoro, P., H. Etienne, N. Fernere Michaux and M.P. Carron. 1993. Callus friability and somatic embryogenesis in Hevea brasiliensis. Plant Cell Tiss Org Cult. 33: 331–338.

    Article  CAS  Google Scholar 

  • Muralidharan, E.M. and A.F. Mascarenhas. 1987. In vitro plantlet formation by organogenesis in Eucalyptus camaldulensis and by somatic embryogenesis in Eucalyptus citriodora. Plant Cell Rep. 6: 256–259.

    Article  Google Scholar 

  • Muralidhar Rao, M. and G. Lakshmi Sita. 1996. Direct somatic embryogenesis from immature embryos of rosewood (Dalbergia latifolia Roxb.). Plant Cell Rep. 15: 355–359.

    Article  Google Scholar 

  • Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bioassay with tobacco tissue cultures. Plant Physiol. 15: 473–479.

    Article  CAS  Google Scholar 

  • Newton, R.J., K.A. Marek Swize, M.E. Magallanes Cedeno, N. Dong, S. Sen and S.M. Jain. 1995. Somatic embryogenesis in slash pine (Pinus elliottii Engelm.), In Somatic Embryogenesis in Woody Plants. 3. Gymnosperms. pp. 183–195. (eds. S.M. Jain, P.K. Gupta and R.J. Newton). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Ninkovic, S., J. Milijus Djukic and M. Neskovic. 1995. Genetic transformation of alfalfa somatic embryos and their clonal propagation through repetitive somatic embryogenesis. Plant Cell Tiss Org Cult. 42: 255–260.

    Article  CAS  Google Scholar 

  • Park, Y.G. 1996. The prospects for the utilization of Robinia pseudoacacia in Korea. Kor J Apicult. 11: 27–56.

    Google Scholar 

  • Park, Y.G. and S.H. Son. 1988. In vitro organogenesis and somatic embryogenesis from punctured leaf of Populus nigra × P. maximowiczii. Plant Cell Tiss Org Cult. 15: 95–105.

    Article  CAS  Google Scholar 

  • Pijut, P.M. 1993. Somatic embryogenesis in butternut, Juglans cinerea. Can J For Res. 23: 835–838.

    Article  CAS  Google Scholar 

  • Preece, J.E., J. Zhao and F.H. Kung. 1989. Callus production and somatic embryogenesis from white ash. HortSci. 24: 377–380.

    CAS  Google Scholar 

  • Risser, P.G. and P.R. White. 1964. Nutritional requirements of spruce tumor cells in vitro. Physiol Plant. 15: 620–635.

    Article  Google Scholar 

  • Robertson, D., A.K. Weissinger, R. Ackley, S. Glover and R.R. Sederoff. 1992. Genetic transformation of Norway spruce (Picea abies L. Karst) using somatic embryo expiants by microprojectile bombardment. Plant Mol Biol. 19: 925–935.

    Article  PubMed  CAS  Google Scholar 

  • Scorza, R.J. M. Cordts, D.W. Ramming and R.L. Emershad. 1995. Transformation of grape (Vitis vinifera L.) zygotic-derived somatic embryos and regeneration of transgenic plants. Plant Cell Rep. 14: 589–592.

    Article  CAS  Google Scholar 

  • Scorza, R., P.H. Morgens, J.M. Cordts, S. Mante and A.M. Callahan. 1990. Agrobacterium-mediated transformation of peach (Prunus persica L. Batsch) leaf segments, immature embryos, and long-term embryogenic callus. In Vitro Cell Dev Biol. 26: 829–834.

    Article  CAS  Google Scholar 

  • Skolmen, R.G. 1986. Acacia (Acacia koa Gray). In Biotechnology in Agriculture and Forestry. Vol 1. Trees 1. pp. 375–384. (ed. Y.P.S. Bajaj). Berlin: Springer Verlag.

    Google Scholar 

  • Steward, F.C., H.W. Israel, R.L. Mort, H.J Wilson and A.D. Krikorian. 1975. Observations on growth and morphogenesis in cultured cells of carrot (Daucus carota L.). Phil Trans R Soc Lond B273: 33–53.

    Google Scholar 

  • Stringer, J.W. and S.B. Carpenter. 1982. Energy content of black locust growing on surface mined land (Robinia pseudoacacia), In 1982 Symposium on Surface Mining, Hydrology, Sedimentology, and Reclamation, Office of Engineering Serv., College of Engineering, University of Kentucky, pp. 243–248.

    Google Scholar 

  • Tomar, U.K., and S.C. Gupta. 1986. Organogenesis and somatic embryogenesis in leguminous trees (Albizia spp.), VI Intl. Congr. Plant Tissue and Cell Cult. Abstr., Minneapolis, MN, p27.

    Google Scholar 

  • Tomar, U.K. and S.C. Gupta. 1988. Somatic embryogenesis and organogenesis in callus cultures of a tree legume — Albizia richardiana King. Plant Cell Rep. 7: 70–73.

    Article  CAS  Google Scholar 

  • Trigiano, R.N., R.M. Beaty and E.T. Graham. 1988. Somatic embryogenesis from immature embryos of redbud (Cercis canadensis). Plant Cell Rep. 7: 148–150.

    Article  CAS  Google Scholar 

  • Trigiano, R.N., R.L. Geneve, S.A. Merkle and J.E. Preece. 1992. Tissue and cell cultures of woody legumes. Hort Rev. 14: 265–332.

    CAS  Google Scholar 

  • Weaver, L.A and R.N. Trigiano. 1991. Plant regeneration of Cladrastis lutea (Fabaceae) via somatic embryogenesis, Plant Cell Rep. 10: 183–186.

    Article  CAS  Google Scholar 

  • Wendi, L. 1987. Site conditions and selection of tree species for seaboard afforestration in Jiangsu province. J Nanjing For Univ 1: 71–79.

    Google Scholar 

  • Woo, J.H. 1994. Utilization and tissue culture of Robinia pseudoacacia L. in Korea. Ph.D. thesis, Department of Forestry, Kyungpook National University, Daegu, Korea. pp. 113.

    Google Scholar 

  • Woo, J.H., M.S. Choi and YG. Park. 1995a. Plant regeneration from callus cultures of black locust (Robinia pseudoacacia L.). J Kor For Soc 84: 145–150.

    Google Scholar 

  • Woo, J.H., M.S. Choi, E.Y. Joung, W.I. Chung, J.K. Jo and YG. Park. 1995b. Improvement of black locust (Robinia pseudoacacia L.) through tissue culture. I. Micropropagation and somatic embryogenesis J Kor For Soc. 84: 41–47.

    Google Scholar 

  • Zobel, B., and J. Talbert. 1984. Applied Forest Tree Improvement. New York: John Wiley and Sons, Inc.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Han, K.H., Park, Y.G. (1999). Somatic Embryogenesis in Black Locust (Robinia pseudoacacia L.). In: Jain, S.M., Gupta, P.K., Newton, R.J. (eds) Somatic Embryogenesis in Woody Plants. Forestry Sciences, vol 59. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4774-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4774-3_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6006-6

  • Online ISBN: 978-94-011-4774-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics